Plant Growth-Promoting Rhizobacteria (PGPR) have emerged as vital components of sustainable crop protection strategies, offering an eco-friendly alternative to synthetic agrochemicals. These beneficial microorganisms colonize the rhizosphere and suppress a wide range of phytopathogens through diverse mechanisms including the production of antimicrobial compounds, competition for nutrients and ecological niches, degradation of virulence factors, and induction of systemic resistance in host plants. PGPR not only promote plant health but also contribute to improved soil fertility and ecological balance. This chapter comprehensively explores the multifaceted roles of PGPR in suppressing bacterial, fungal, and nematode pathogens, with emphasis on recent advances in molecular insights, formulation technologies, and successful integration into farming practices. Challenges such as variability in field efficacy, formulation stability, and regulatory hurdles are discussed alongside emerging solutions and future directions for large-scale commercialization. Overall, PGPR represent a cornerstone of the transition toward climate-resilient, low-input, and biologically-integrated agriculture.
Plant growth-promoting rhizobacteria, Biocontrol, Induced systemic resistance, Rhizosphere, Sustainable agriculture
Aasfar, A., Bargaz, A., Yaakoubi, K., Hilali, A., Bennis, I., Zeroual, Y., & Meftah Kadmiri, I. (2021). Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Frontiers in Microbiology, 12, Article 628379. https://doi.org/10.3389/fmicb.2021.628379
Adinarayana, K., Ellaiah, P., & Prasad, D. S. (2003). Purification and partial characterization of thermostable serine alkaline protease from a newly isolated Bacillus subtilis PE-11. AAPS PharmSciTech, 4(4), 56. https://doi.org/10.1208/pt040456
Akgül, D. S., & Mirik, M. (2008). Biocontrol of Phytophthora capsici on pepper plants by Bacillus megaterium strains. Journal of Plant Pathology, 90(1), 29-34.
Aljbory, Z., & Chen, M. S. (2018). Indirect plant defense against insect herbivores: A review. Insect Science, 25(1), 2–23. https://doi.org/10.1111/1744-7917.12423
Alori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology, 8, Article 971. https://doi.org/10.3389/fmicb.2017.00971
Askeland, R. A., & Morrison, S. M. (1983). Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa. Applied and Environmental Microbiology, 45(6), 1802-1807. https://doi.org/10.1128/aem.45.6.1802-1807.1983
Bai, Y., Eijsink, V. G., Kielak, A. M., van Veen, J. A., & de Boer, W. (2016). Genomic comparison of chitinolytic enzyme systems from terrestrial and aquatic bacteria. Environmental Microbiology, 18(1), 38-49. https://doi.org/10.1111/1462-2920.12879
Boiero, L., Perrig, D., Masciarelli, O., Penna, C., Cassán, F., & Luna, V. (2007). Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Applied Microbiology and Biotechnology, 74(4), 874-880. https://doi.org/10.1007/s00253-006-0730-z
Broadbent, P., Baker, K. F., Franks, N., & Holland, J. (1977). Effect of Bacillus sp. on increased growth of seedlings in steamed and non-treated soil. Phytopathology, 67(8), 1027–1034. https://doi.org/10.1094/Phyto-67-1027
Carrillo-Castañeda, G., Juárez Muñoz, J., Ramón Peralta-Videa, J., Gomez, E., & Gardea-Torresdey, J. L. (2002). Plant growth-promoting bacteria promote copper and iron translocation from root to shoot in alfalfa seedlings. Journal of Plant Nutrition, 26(9), 1801-1814. https://doi.org/10.1081/PLN-120023773
Chang, W. T., Chen, M. L., & Wang, S. L. (2010). An antifungal chitinase produced by Bacillus subtilis using chitin waste as a carbon source. World Journal of Microbiology and Biotechnology, 26(5), 945-950. https://doi.org/10.1007/s11274-009-0268-9
Chieb, M., & Gachomo, E. W. (2023). The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC Plant Biology, 23(1), Article 407. https://doi.org/10.1186/s12870-023-04419-7
Chin-A-Woeng, T. F. C., Bloemberg, G. V., Mulders, I. H. M., Dekkers, L. C., & Lugtenberg, B. J. J. (2000). Root colonization is essential for biocontrol of tomato foot and root rot by the phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391. Molecular Plant-Microbe Interactions, 13(12), 1340-1345. https://doi.org/10.1094/MPMI.2000.13.12.1340
Cho, S. J., Lim, W. J., Hong, S. Y., Park, S. R., & Yun, H. D. (2003). Endophytic colonization of balloon flower by antifungal strain Bacillus sp. CY22. Bioscience, Biotechnology, and Biochemistry, 67(10), 2132-2138. https://doi.org/10.1271/bbb.67.2132
Dodds, P. N., & Rathjen, J. P. (2010). Plant immunity: Towards an integrated view of plant–pathogen interactions. Nature Reviews Genetics, 11(8), 539–548. https://doi.org/10.1038/nrg2812
Dubey, R. K., Tripathi, V., & Dubey, D. (2023). Recent developments in the application of PGPR for sustainable agriculture under changing environmental conditions. Plant Stress, 4, Article 100095. https://doi.org/10.1016/j.stress.2022.100095
Dwivedi, D., & Johri, B. N. (2003). Antifungals from fluorescent pseudomonads: Biosynthesis and regulation. Current Science, 85(11), 1693-1703.
Emmert, E. A., Klimowicz, A. K., Thomas, M. G., & Handelsman, J. (2004). Genetics of zwittermicin A production by Bacillus cereus. Applied and Environmental Microbiology, 70(1), 104-113. https://doi.org/10.1128/AEM.70.1.104-113.2004
Esitken, A., Karlidag, H., Ercisli, S., Turan, M., & Sahin, F. (2003). The effect of spraying a growth promoting bacterium on the yield, growth and nutrient element composition of leaves of apricot (Prunus armeniaca L. cv. Hacihaliloglu). Australian Journal of Agricultural Research, 54(4), 377-380. https://doi.org/10.1071/AR02170
Ge, H., & Zhang, F. (2019). Growth-promoting ability of Rhodopseudomonas palustris G5 and its effect on induced resistance in cucumber against salt stress. Journal of Plant Growth Regulation, 38(1), 180-188. https://doi.org/10.1007/s00344-018-9811-1
Ghorbanpour, M., Hosseini, N. M., Rezazadeh, S., Omidi, M., Khavazi, K., & Etminan, A. (2010). Hyoscyamine and scopolamine production of black henbane (Hyoscyamus niger) infected with Pseudomonas putida and P. fluorescens strains under water deficit stress. Planta Medica, 76(12), P167. https://doi.org/10.1055/s-0030-1264426
Grobelak, A., Napora, A., & Kacprzak, M. J. (2015). Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth. Ecological Engineering, 84, 22-28. https://doi.org/10.1016/j.ecoleng.2015.07.009
Gupta, D., & Sinha, S. N. (2020). Production of hydrogen cyanide (HCN) by purple non-sulfur bacterium isolated from the rice field of West Bengal. IOSR Journal of Pharmacy and Biological Sciences, 15(1), 16-26. https://doi.org/10.9790/3008-1501061626
Han, H. S., & Lee, K. D. (2006). Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant, Soil and Environment, 52(3), 130.
Hatsugai, N., Igarashi, D., Mase, K., Lu, Y., Tsuda, Y., Chakravarthy, S., ... & Katagiri, F. (2017). A plant effector-triggered immunity signaling sector is inhibited by pattern-triggered immunity. The EMBO Journal, 36(18), 2758-2769. https://doi.org/10.15252/embj.201696239
Hider, R. C., & Kong, X. (2010). Chemistry and biology of siderophores. Natural Product Reports, 27(5), 637-657. https://doi.org/10.1039/B921201N
Ho, Y. N., Hoo, S. Y., Wang, B. W., Hsieh, C. T., Lin, C. C., Sun, C. H., ... & Yang, Y. L. (2021). Specific inactivation of an antifungal bacterial siderophore by a fungal plant pathogen. The ISME Journal, 15(6), 1858-1861. https://doi.org/10.1038/s41396-021-00898-w
Illakkiam, D., Anuj, N. L., Ponraj, P., Shankar, M., Rajendhran, J., & Gunasekaran, P. (2013). Proteolytic enzyme mediated antagonistic potential of Pseudomonas aeruginosa against Macrophomina phaseolina. Indian Journal of Experimental Biology, 51(11), 1024-1031.
Jaleel, C. A., Gopi, R., Gomathinayagam, M., & Panneerselvam, R. (2009). Traditional and non-traditional plant growth regulators alters phytochemical constituents in Catharanthus roseus. Process Biochemistry, 44(2), 205-209. https://doi.org/10.1016/j.procbio.2008.09.006
Khan, M. R., & Khan, S. M. (2002). Effects of root-dip treatment with certain phosphate solubilizing microorganisms on the fusarial wilt of tomato. Bioresource Technology, 85(2), 213-215. https://doi.org/10.1016/S0960-8524(02)00078-4
Kiruthika, S., & Arunkumar, M. (2021). A comprehensive study on IAA production by Bradyrhizobium japonicum and Bacillus subtilis and its effect on Vigna radiata plant growth. Indian Journal of Agricultural Research, 55(5), 570-576. https://doi.org/10.18805/IJARe.A-474
Kloepper, J. W., Leong, J., Teintze, M., & Schroth, M. N. (1980). Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature, 286(5776), 885-886. https://doi.org/10.1038/286885a0
Kud, J., Wang, W., Gross, R., Fan, Y., Huang, L., Yuan, Y., ... & Xiao, F. (2019). The potato cyst nematode effector RHA1B is a ubiquitin ligase and uses two distinct mechanisms to suppress plant immune signaling. PLoS Pathogens, 15(4), Article e1007720. https://doi.org/10.1371/journal.ppat.1007720
Kumar, P., Thakur, S., Dhingra, G. K., Singh, A., Pal, M. K., Harshvardhan, K., ... & Maheshwari, D. K. (2018). Inoculation of siderophore producing rhizobacteria and their consortium for growth enhancement of wheat plant. Biocatalysis and Agricultural Biotechnology, 15, 264-269. https://doi.org/10.1016/j.bcab.2018.06.009
Lechenet, M., Dessaint, F., Py, G., Makowski, D., & Munier-Jolain, N. (2017). Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nature Plants, 3(3), 1-6. https://doi.org/10.1038/nplants.2017.8
Leclère, V., Béchet, M., Adam, A., Guez, J. S., Wathelet, B., Ongena, M., ... & Jacques, P. (2005). Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Applied and Environmental Microbiology, 71(8), 4577-4584. https://doi.org/10.1128/AEM.71.8.4577-4584.2005
Li, X., Gu, G. Q., Chen, W., Gao, L. J., Wu, X. H., & Zhang, L. Q. (2018). The outer membrane protein OprF and the sigma factor SigX regulate antibiotic production in Pseudomonas fluorescens 2P24. Microbiological Research, 206, 159-167. https://doi.org/10.1016/j.micres.2017.10.011
Liu, D., Lian, B., & Dong, H. (2012). Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiology Journal, 29(5), 413-421. https://doi.org/10.1080/01490451.2011.583314
Lokesh, S., Bharath, B., Raghavendra, V., & Govindappa, M. (2007). Importance of plant growth-promoting rhizobacteria in enhancing the seed germination and growth of watermelon attacked by fungal pathogens. Acta Agronomica Hungarica, 55(2), 243-249. https://doi.org/10.1556/aagr.55.2007.2.14
Lu, Y., & Tsuda, K. (2021). Intimate association of PRR-and NLR-mediated signaling in plant immunity. Molecular Plant-Microbe Interactions, 34(1), 3-14. https://doi.org/10.1094/MPMI-08-20-0220-FI
Luo, J., Zhou, J. J., & Zhang, J. Z. (2018). Aux/IAA gene family in plants: molecular structure, regulation, and function. International Journal of Molecular Sciences, 19(1), Article 259. https://doi.org/10.3390/ijms19010259
Mayer, C., Kluj, R. M., Mühleck, M., Walter, A., Unsleber, S., Hottmann, I., & Borisova, M. (2019). Bacteria's different ways to recycle their own cell wall. International Journal of Medical Microbiology, 309(7), Article 151326. https://doi.org/10.1016/j.ijmm.2019.151326
Neilands, J. B. (1995). Siderophores: Structure and function of microbial iron transport compounds. Journal of Biological Chemistry, 270(45), 26723-26726. https://doi.org/10.1074/jbc.270.45.26723
Nielsen, T. H., Sørensen, D., Tobiasen, C., Andersen, J. B., Christophersen, C., Givskov, M., & Sørensen, J. (2002). Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Applied and Environmental Microbiology, 68(7), 3416–3423. https://doi.org/10.1128/aem.68.7.3416-3423.2002
Nowak-Thompson, B., Chancey, N., Wing, J. S., Gould, S. J., & Loper, J. E. (1999). Characterization of a pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. Journal of Bacteriology, 181(7), 2166–2174. https://doi.org/10.1128/JB.181.7.2166-2174.1999
Pan, H., Preisser, E. L., Su, Q., Jiao, X., Xie, W., Wang, S., et al. (2016). Natal host plants can alter herbivore competition. PLoS ONE, 11(12), Article e0169142. https://doi.org/10.1371/journal.pone.0169142
Papenfort, K., & Bassler, B. L. (2016). Quorum sensing signal–response systems in Gram-negative bacteria. Nature Reviews Microbiology, 14(9), 576-588. https://doi.org/10.1038/nrmicro.2016.89
Recep, K., Fikrettin, S., Erkol, D., & Cafer, E. (2009). Biological control of the potato dry rot caused by Fusarium species using PGPR strains. Biological Control, 50(2), 194-198. https://doi.org/10.1016/j.biocontrol.2009.02.008
Rizza, A., & Jones, A. M. (2019). The makings of a gradient: Spatiotemporal distribution of gibberellins in plant development. Current Opinion in Plant Biology, 47, 9-15. https://doi.org/10.1016/j.pbi.2018.08.006
Roberts, S. C., & Shuler, M. L. (1997). Large-scale plant cell culture. Current Opinion in Biotechnology, 8(2), 154-159. https://doi.org/10.1016/S0958-1669(97)80005-5
Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W., Arrebola, E., & Pérez-García, A. (2007). The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Molecular Plant-Microbe Interactions, 20(4), 430–440. https://doi.org/10.1094/MPMI-20-4-0430
Rudrappa, T., Biedrzycki, M. L., Kunjeti, S. G., Donofrio, N. M., Czymmek, K. J., Paré, P. W., & Bais, H. P. (2010). The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Communicative & Integrative Biology, 3(2), 130-138. https://doi.org/10.4161/cib.3.2.10947
Santoyo, G., Urtis-Flores, C. A., Loeza-Lara, P. D., Orozco-Mosqueda, M. D. C., & Glick, B. R. (2021). Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology, 10(6), Article 475. https://doi.org/10.3390/biology10060475
Sarkar, A., Ghosh, P. K., Pramanik, K., Mitra, S., Soren, T., Pandey, S., ... & Maiti, T. K. (2018). A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Research in Microbiology, 169(1), 20-32. https://doi.org/10.1016/j.resmic.2017.07.001
Sasirekha, B., & Srividya, S. (2016). Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli. Agriculture and Natural Resources, 50(4), 250-256. https://doi.org/10.1016/j.anres.2016.03.003
Sayyed, R. Z., Badgujar, M. D., Sonawane, H. M., Mhaske, M. M., & Chincholkar, S. B. (2005). Production of microbial iron chelators (siderophores) by fluorescent Pseudomonads. Indian Journal of Biotechnology, 4(4), 484-490.
Sekar, S., & Kandavel, D. (2010). Interaction of plant growth promoting rhizobacteria (PGPR) and endophytes with medicinal plants–new avenues for phytochemicals. Journal of Phytology, 2(7), 91-100.
Senthilkumar, M., Swarnalakshmi, K., Govindasamy, V., Lee, Y. K., & Annapurna, K. (2009). Biocontrol potential of soybean bacterial endophytes against charcoal rot fungus, Rhizoctonia bataticola. Current Microbiology, 58(4), 288-293. https://doi.org/10.1007/s00284-008-9324-4
Sharaf-Eldin, M., Elkholy, S., Fernández, J. A., Junge, H., Cheetham, R., Guardiola, J., & Weathers, P. (2008). Bacillus subtilis FZB24® affects flower quantity and quality of saffron (Crocus sativus). Planta Medica, 74(10), 1316-1320. https://doi.org/10.1055/s-0028-1081297
Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., & Zhang, F. (2011). Phosphorus dynamics: from soil to plant. Plant Physiology, 156(3), 997-1005. https://doi.org/10.1104/pp.111.175232
Singh, R. P., Jha, P., & Jha, P. N. (2017). Bio-inoculation of plant growth-promoting rhizobacterium Enterobacter cloacae ZNP-3 increased resistance against salt and temperature stresses in wheat plant (Triticum aestivum L.). Journal of Plant Growth Regulation, 36(3), 783-798. https://doi.org/10.1007/s00344-017-9694-8
South, K. A., Nordstedt, N. P., & Jones, M. L. (2021). Identification of plant growth promoting rhizobacteria that improve the performance of greenhouse-grown petunias under low fertility conditions. Plants, 10(7), Article 1410. https://doi.org/10.3390/plants10071410
Tabacchioni, S., Bevivino, A., Dalmastri, C., & Chiarini, L. (2002). Bulkholderia cepacia complex in the rhizosphere: A minireview. Annals of Microbiology, 52(2), 103-118.
Tewari, S., & Arora, N. K. (2018). Role of salicylic acid from Pseudomonas aeruginosa PF23EPS+ in growth promotion of sunflower in saline soils infested with phytopathogen Macrophomina phaseolina. Environmental Sustainability, 1(1), 49-59.
Thrane, C., Nielsen, T. H., Nielsen, M. N., Sørensen, J., & Olsson, S. (2000). Viscosinamide-producing Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beet rhizosphere. FEMS Microbiology Ecology, 33(2), 139-146. https://doi.org/10.1111/j.1574-6968.2000.tb01132.x
Vlot, A. C., Dempsey, D. A., & Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 47, 177–206. https://doi.org/10.1146/annurev.phyto.050908.135202
Vocciante, M., Grifoni, M., Fusini, D., Petruzzelli, G., & Franchi, E. (2022). The role of plant growth-promoting rhizobacteria (PGPR) in mitigating plant’s environmental stresses. Applied Sciences, 12(3), Article 1231. https://doi.org/10.3390/app12031231
Wang, H., Liu, R., You, M. P., Barbetti, M. J., & Chen, Y. (2021). Pathogen biocontrol using plant growth-promoting bacteria (PGPR): Role of bacterial diversity. Microorganisms, 9(9), Article 1988. https://doi.org/10.3390/microorganisms9091988
Weller, D. M., Landa, B. B., Mavrodi, O. V., Schroeder, K. L., De La Fuente, L., Bankhead, S. B., Molar, R. A., Bonsall, R. F., Mavrodi, D. V., & Thomashow, L. S. (2007). Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biology, 9(1), 4–20. https://doi.org/10.1111/j.1438-8677.2007.00192.x
Winkelmann, G. (1998). Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against streptomycetes. Journal of Applied Microbiology, 85(1), 69-78. https://doi.org/10.1046/j.1365-2672.1998.00481.x
Yin, L. J., Lin, H. H., & Xiao, Z. R. (2010). Purification and characterization of a cellulase from Bacillus subtilis YJ1. Journal of Marine Science and Technology, 18(3), 19.
Zhuang, X., Chen, J., Shim, H., & Bai, Z. (2007). New advances in plant growth-promoting rhizobacteria for bioremediation. Environment International, 33(3), 406-413. https://doi.org/10.1016/j.envint.2006.12.001
Zipfel, C. (2014). Plant pattern-recognition receptors. Trends in Immunology, 35(7), 345-35. https://doi.org/10.1016/j.it.2014.05.006