Editorial Book
Book Title: Handbook of Plant Breeding

PAID ACCESS | Published on : 04-Feb-2026 | Pages: 8-18 | Doi : 10.37446/edibook152024/8-18

GENE EDITING AND CRISPR - Cas9 TECHNOLOGY


  • Muhammed Ameer
  • Division of Crop Improvement and Biotechnology, ICAR- Indian Institute of Spices Research, Kozhikode, Kerala India.

  • Dhivyadharshiny Ramalingam
  • Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, Kerala India.

  • Firos Thara Mannil Basha
  • Division of Genetics, ICAR- Indian Agricultural Research Institute, New Delhi, India.

  • Rehna Augustine
  • Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, Kerala India.
Abstract

Genome editing has emerged as one of the most transformative tools in modern biotechnology, enabling targeted and precise modifications in the genome of living organisms. Genome editing has wide applications in all fields of biology. Among the various genome editing tools CRISPR/Cas9 technology is the most popular and widely used tool. The precision and ease of use has made the CRISPR/Cas technology as the favourite tool in the tool box of a genetic engineers. Derived from bacterial immune system, the CRISPR-Cas system show wide variations in terms of components, mode of action specificity etc. There is various advancement in the CRISPR-Cas system which are developed to overcome the negative effects of conventional system like off target effects, PAM requirement specificity etc. This chapter provides an overview of gene-editing technologies, focusing on the evolution from early approaches like Zinc Finger Nucleases (ZFNs) to the highly efficient CRISPR-Cas systems. The molecular components and working mechanism of CRISPR, highlighting the roles of guide RNAs, Cas nucleases, and protospacer adjacent motifs in achieving accurate DNA cleavage are briefly explained. While CRISPR technology encompasses numerous breakthroughs and applications in crop improvement, such as enhancing disease resistance, tolerance to abiotic stress, and nutritional quality, this chapter emphasizes the most notable and relevant advancements in relation to plant breeding. Various CRISPR-Cas cassette delivery techniques are also discussed with respect to their efficiency and limitations in plant systems. This chapter serves as a foundational resource for understanding the technology's scope and applications in plant science.

Keywords

Genome editing, CRISPR-Cas9, guide RNA, Crop improvement, NHEJ

References

Ahmad, S., Wei, X., Sheng, Z., Hu, P., & Tang, S. (2020). CRISPR/Cas9 for development of disease resistance in plants: recent progress, limitations and future prospects. Briefings in Functional Genomics, 19(1), 26-39.

Ali, A., Jabeen, N., Farruhbek, R., Chachar, Z., Laghari, A. A., Chachar, S., & Yang, Z. (2025). Enhancing nitrogen use efficiency in agriculture by integrating agronomic practices and genetic advances. Frontiers in Plant Science, 16, 1543714.

Andersson, M., Turesson, H., Olsson, N., Fält, A. S., Ohlsson, P., Gonzalez, M. N., & Hofvander, P. (2018). Genome editing in potato via CRISPR‐Cas9 ribonucleoprotein delivery. Physiologia plantarum, 164(4), 378-384.

Arafa, R. A., Kamel, S. M., Taher, D. I., Solberg, S. Ø., & Rakha, M. T. (2022). Leaf extracts from resistant wild tomato can be used to control late blight (Phytophthora infestans) in the cultivated tomato. Plants, 11(14), 1824.

Assou, J., Zhang, D., Roth, K. D., Steinke, S., Hust, M., Reinard, T., & Boch, J. (2022). Removing the major allergen Bra j I from brown mustard (Brassica juncea) by CRISPR/Cas9. The Plant Journal, 109(3), 649-663.

Azeez, S. S., Hamad, R. S., Hamad, B. K., Shekha, M. S., & Bergsten, P. (2024). Advances in CRISPR-Cas technology and its applications: Revolutionising precision medicine. Frontiers in Genome Editing, 6, 1509924.

Barrangou, R., & Horvath, P. (2012). CRISPR: new horizons in phage resistance and strain identification. Annual review of food science and technology, 3(1), 143-162.

Becker, S., & Boch, J. (2021). TALE and TALEN genome editing technologies. Gene and Genome Editing, 2, 100007.

Bortesi, L., & Fischer, R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology advances, 33(1), 41-52.

Carroll, D. (2011). Genome engineering with zinc-finger nucleases. Genetics, 188(4), 773-782.

Čermák, T., Baltes, N. J., Čegan, R., Zhang, Y., & Voytas, D. F. (2015). High-frequency, precise modification of the tomato genome. Genome biology, 16, 1-15.

Clark, L. F., & Hobbs, J. E. (2024). International Regulation of Gene Editing Technologies in Crops: Current Status and Future Trends (p. 118). Springer Nature.

Do, P. T., Nguyen, C. X., Bui, H. T., Tran, L. T., Stacey, G., Gillman, J. D., & Stacey, M. G. (2019). Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2–1A and GmFAD2–1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean. BMC plant biology, 19, 1-14.

Dong, O. X., Yu, S., Jain, R., Zhang, N., Duong, P. Q., Butler, C., & Ronald, P. C. (2020). Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nature communications, 11(1), 1178.

Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096.

Gaillochet, C., Develtere, W., & Jacobs, T. B. (2021). CRISPR screens in plants: approaches, guidelines, and future prospects. The Plant Cell, 33(4), 794-813.

Gostimskaya, I. CRISPR–Cas9: A History of Its Discovery and Ethical Considerations of Its Use in Genome Editing. Biochemistry Moscow 87, 777–788 (2022).

Gupta, V., Sengupta, M., Prakash, J., Tripathy, B. C., Gupta, V., Sengupta, M., & Tripathy, B. C. (2017). Fundamentals of Recombinant DNA Technology. Basic and Applied Aspects of Biotechnology, 23-58.

Hillary, V. E., & Ceasar, S. A. (2023). A review on the mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14 proteins utilized for genome engineering. Molecular biotechnology, 65(3), 311-325.

Huang, J., Gao, L., Luo, S., Liu, K., Qing, D., Pan, Y., & Zhu, C. (2022). The genetic editing of GS3 via CRISPR/Cas9 accelerates the breeding of three-line hybrid rice with superior yield and grain quality. Molecular Breeding, 42(4), 22.

Jiang, F., & Doudna, J. A. (2017). CRISPR–Cas9 structures and mechanisms. Annual review of biophysics, 46(1), 505-529.

Juma, B. S., Mukami, A., Mweu, C., Ngugi, M. P., & Mbinda, W. (2022). Targeted mutagenesis of the CYP79D1 gene via CRISPR/Cas9-mediated genome editing results in lower levels of cyanide in cassava. Frontiers in plant science, 13, 1009860.

KhokharVoytas, A., Shahbaz, M., Maqsood, M. F., Zulfiqar, U., Naz, N., Iqbal, U. Z., & AlShaqhaa, M. A. (2023). Genetic modification strategies for enhancing plant resilience to abiotic stresses in the context of climate change. Functional & integrative genomics, 23(3), 283.

Koonin, E. V., & Makarova, K. S. (2013). CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes. RNA biology, 10(5), 679-686.

Kumari, J., Mahatman, K. K., Sharma, S., Singh, A. K., Adhikari, S., Bansal, R., & Yadav, M. C. (2022). Recent advances in different omics mechanism for drought stress tolerance in rice. Russian Journal of Plant Physiology, 69(1), 18.

Laforest, L. C., & Nadakuduti, S. S. (2022). Advances in delivery mechanisms of CRISPR gene-editing reagents in plants. Frontiers in Genome Editing, 4, 830178.

Li, C., Nguyen, V., Liu, J., Fu, W., Chen, C., Yu, K., & Cui, Y. (2019). Mutagenesis of seed storage protein genes in soybean using CRISPR/Cas9. BMC Research Notes, 12, 1-7.

Li, R., Zhang, L., Wang, L., Chen, L., Zhao, R., Sheng, J., & Shen, L. (2018). Reduction of tomato-plant chilling tolerance by CRISPR–Cas9-mediated SlCBF1 mutagenesis. Journal of agricultural and food chemistry, 66(34), 9042-9051.

Ma, X., Zhang, Q., Zhu, Q., Liu, W., Chen, Y., Qiu, R., & Liu, Y. G. (2015). A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular plant, 8(8), 1274-1284.

Mahfouz, M. M., Li, L., Shamimuzzaman, M., Wibowo, A., Fang, X., & Zhu, J. K. (2011). De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proceedings of the National Academy of Sciences, 108(6), 2623-2628.

Majumder, S., Datta, K., & Datta, S. K. (2019). Rice biofortification: high iron, zinc, and vitamin-A to fight against “hidden hunger”. Agronomy, 9(12), 803.

Makarova, K. S., Haft, D. H., Barrangou, R., Brouns, S. J., Charpentier, E., Horvath, P., & Koonin, E. V. (2011). Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology, 9(6), 467-477.

Matsumoto, D., & Nomura, W. (2023). The history of genome editing: advances from the interface of chemistry & biology. Chemical Communications, 59(50), 7676-7684.

Oliva, R., Ji, C., Atienza-Grande, G., Huguet-Tapia, J. C., Perez-Quintero, A., Li, T., & Yang, B. (2019). Broad-spectrum resistance to bacterial blight in rice using genome editing. Nature biotechnology, 37(11), 1344-1350.

Press Information Bureau. (2025, June 26). Union Agriculture Minister Shri Shivraj Singh Chouhan Announces Two Genome-Edited Rice Varieties Developed in India. https://www.pib.gov.in/PressReleasePage.aspx?PRID=2126802

Puchta, H., & Fauser, F. (2013). Gene targeting in plants: 25 years later. International Journal of Developmental Biology, 57(6-7-8), 629-637.

Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., & Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nature protocols, 8(11), 2281-2308.

Sandhya, D., Jogam, P., Allini, V. R., Abbagani, S., & Alok, A. (2020). The present and potential future methods for delivering CRISPR/Cas9 components in plants. Journal of Genetic Engineering and Biotechnology, 18(1), 25.

Sashidhar, N., Harloff, H. J., Potgieter, L., & Jung, C. (2020). Gene editing of three BnITPK genes in tetraploid oilseed rape leads to significant reduction of phytic acid in seeds. Plant Biotechnology Journal, 18(11), 2241-2250.

Shmakov, S., Smargon, A., Scott, D., Cox, D., Pyzocha, N., Yan, W., & Koonin, E. V. (2017). Diversity and evolution of class 2 CRISPR-Cas systems. Nature reviews microbiology, 15(3), 169-182.

Silva, G., Poirot, L., Galetto, R., Smith, J., Montoya, G., Duchateau, P., & Pâques, F. (2011). Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Current gene therapy, 11(1), 11-27.

Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C., & Doudna, J. A. (2014). DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Biophysical Journal, 106(2), 695a.

Tang, Q., Wang, X., Jin, X., Peng, J., Zhang, H., & Wang, Y. (2023). CRISPR/Cas technology revolutionizes crop breeding. Plants, 12(17), 3119.

Tyagi, S., Kumar, R., Kumar, V., Won, S. Y., & Shukla, P. (2021). Engineering disease resistant plants through CRISPR-Cas9 technology. GM crops & food, 12(1), 125-144.

Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., & Gregory, P. D. (2010). Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics, 11(9), 636-646.

Veillet, F., Chauvin, L., Kermarrec, M. P., Sevestre, F., Merrer, M., Terret, Z., & Chauvin, J. E. (2019). The Solanum tuberosum GBSSI gene: a target for assessing gene and base editing in tetraploid potato. Plant cell reports, 38(9), 1065-1080.

Zhang, D., Hussain, A., Manghwar, H., Xie, K., Xie, S., Zhao, S., & Ding, F. (2020). Genome editing with the CRISPR‐Cas system: an art, ethics and global regulatory perspective. Plant biotechnology journal, 18(8), 1651-1669.

Zhang, S., Zhang, R., Gao, J., Song, G., Li, J., Li, W., & Li, G. (2021). CRISPR/Cas9‐mediated genome editing for wheat grain quality improvement. Plant Biotechnology Journal, 19(9), 1684.

ISBN : 978-81-993853-0-6
Price : 75 USD

PDF Download
Chapter Statistics
  • No.of Views (45)