PAID ACCESS | Published on : 26-Dec-2025 | Pages: 52-63 | Doi : 10.37446/edibook172025/52-63
Cardiovascular responses to exercise are critical indicators of the body's ability to adapt to physical stress. This chapter examines the acute and chronic physiological changes in heart rate, blood pressure, cardiac output, and vascular resistance during different exercise intensities (aerobic vs. anaerobic). It also explores how the cardiovascular system meets increased oxygen demand, redistributes blood flow, and enhances efficiency with regular training. Key findings highlight the role of autonomic nervous system regulation, endothelial function, and myocardial adaptations in optimizing performance. Understanding these responses is crucial for enhancing exercise prescription, improving athletic performance, and promoting cardiovascular health in clinical populations.
Cardiovascular, Exercise, Aerobic, Anaerobic, Acute, Chronic
Aune, D., Schlesinger, S., Hamer, M., Norat, T., & Riboli, E. (2020). Physical activity and the risk of sudden cardiac death: a systematic review and meta-analysis of prospective studies. BMC Cardiovascular Disorders, 20(1), 318. https://doi.org/10.1186/s12872-020-01531-z
Bruss, Z. S., & Raja, A. (2022). Physiology, Stroke Volume. In StatPearls. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK547686/
Chaudhry, R., Miao, J. H., & Rehman, A. (2022). Physiology, Cardiovascular. In StatPearls. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK493197/
Gjøvaag, T. F., Mirtaheri, P., Simon, K., Berdal, G., Tuchel, I., Westlie, T., Bruusgaard, K. A., Nilsson, B. B., & Hisdal, J. (2016). Hemodynamic Responses to Resistance Exercise in Patients with Coronary Artery Disease. Medicine and Science in Sports and Exercise, 48(4), 581–588. https://doi.org/10.1249/MSS.0000000000000811
Green, D. J., & Smith, K. J. (2018). Effects of Exercise on Vascular Function, Structure, and Health in Humans. Cold Spring Harbor Perspectives in Medicine, 8(4), a029819. https://doi.org/10.1101/cshperspect.a029819
King, J., & Lowery, D. R. (2023). Physiology, Cardiac Output. In StatPearls. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK470455/
Kingsley, J. D., & Figueroa, A. (2016). Acute and training effects of resistance exercise on heart rate variability. Clinical Physiology and Functional Imaging, 36(3), 179–187. https://doi.org/10.1111/cpf.12223
Kumar, A., Gupta, M., Kohat, A. K., Agrawal, A., Varshney, A., Chugh, A., Koshy, D. I., Gurjar, R., & Kumar, P. (2024). Impact of High-Intensity Interval Training (HIIT) on Patient Recovery After Myocardial Infarction and Stroke: A Fast Track to Fitness. Cureus, 16(11), e73910. https://doi.org/10.7759/cureus.73910
Kumar, A., & Gupta, M. (2024). A Rare Case Report of Takotsubo Cardiomyopathy in a Patient with Hashimoto’s Encephalopathy and Autoimmune Thyroiditis. Indian Journal of Clinical Cardiology, 5(2), 172–177. https://doi.org/10.1177/26324636231222759
Kumar, A., Gupta, M., Varshney, A., Kumari, S., & Sahu, R. N. (2024). Artificial Intelligence in Cardiac Healthcare: Advancements in Managing Coronary Artery Disease and Acute Coronary Syndrome. In Disease and Health Research: New Insights Vol. 10 (pp. 91–115). BP International. https://doi.org/10.9734/bpi/dhrni/v10/3057
Kumar, D. A., Muneer, D. K., & Qureshi, D. N. (2024). Relationship between high sensitivity troponin I and clinical outcomes in non-acute coronary syndrome (non-ACS) acute heart failure patients - a one-year follow-up study. Indian Heart Journal, 76(2), 139–145. https://doi.org/10.1016/j.ihj.2024.04.003
La Gerche, A., Burns, A. T., Mooney, D. J., Inder, W. J., Taylor, A. J., Bogaert, J., Macisaac, A. I., Heidbüchel, H., & Prior, D. L. (2012). Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. European Heart Journal, 33(8), 998–1006. https://doi.org/10.1093/eurheartj/ehr397
Lopes, S., Mesquita-Bastos, J., Garcia, C., Figueiredo, D., Oliveira, J., Guimarães, G. V., Pescatello, L. S., Polonia, J., Alves, A. J., & Ribeiro, F. (2022). The blood pressure response to acute exercise predicts the ambulatory blood pressure response to exercise training in patients with resistant hypertension: results from the EnRicH trial. Hypertension Research, 45(8), 1392–1397. https://doi.org/10.1038/s41440-022-00945-w
Naseer, N. K., Kumar, A., Qureshi, N., & Sajeev, C. G. (2024). Assessment of three-dimensional (3-D) left ventricular ejection fraction and speckled tracking echocardiographic strain parameters in non-ischemic left bundle branch block (LBBB) patients and their association with cardiovascular events - A prospective observational study. Indian Heart Journal, 76(3), 210–217. https://doi.org/10.1016/j.ihj.2024.06.011
Vega, R. B., Konhilas, J. P., Kelly, D. P., & Leinwand, L. A. (2017). Molecular Mechanisms Underlying Cardiac Adaptation to Exercise. Cell Metabolism, 25(5), 1012–1026. https://doi.org/10.1016/j.cmet.2017.04.025
Zhu, X. H., & Chen, W. (2024). Quantitative 17O MRSI of myocardial oxygen metabolic rate, blood flow, and oxygen extraction fraction under normal and high workload conditions. Magnetic Resonance in Medicine, 91(4), 1645–1658. https://doi.org/10.1002/mrm.29908.