Advanced Researches in Agricultural Sciences (Volume 1) | Doi : 10.37446/volbook092024/27-46

PAID ACCESS | Published on : 27-Feb-2025

Advance in Plant Pathology: Emerging Trends and Recent Developments

  • Devamani M
  • Centre for higher studies in Botany and Sericulture (Affiliated to Periyar University), Regional Sericultural Research Station in Vaikkalpattarai, Salem, Tamil Nadu, India.

Abstract

Important advances in plant pathology have changed our knowledge about plant diseases and how to treat them. Recent advances include the use of cutting-edge molecular tools for gene editing, such as CRISPR/Cas9, which creates precise changes to increase plant disease resistance. Research on interactions between plants and microorganisms This has resulted in innovative biological control techniques. which uses helper bacteria to successfully fight infection The use of artificial intelligence (AI) and machine learning to monitor crop health is a key focus of emerging developments. Technologies like drones, IoT devices are transforming precision farming by providing insights into disease outbreaks and providing rapid response. Environmentally friendly pesticides and biological modifications are examples. of sustainable techniques that create stress-tolerant crop varieties to alleviate hardships caused by new diseases and climate change through sophisticated breeding methods that are becoming increasingly popular to reduce their environmental impact. from agricultural operations Implementation of environmentally sustainable practices digital farming and international cooperation Important future directions These initiatives aim to improve food security. Reduce crop loss and support sustainable agricultural systems This brief highlights how modern plant pathology is an interdisciplinary field that combines biology, technology, and sustainability to solve problems in agriculture around the world.

Keywords

Plant pathology, CRISPR, AI, Sustainable agriculture, Disease management

References

  • Shaibu, A. S., Li, B., Zhang, S., & Sun, J. (2020). Soybean cyst nematode-resistance: gene identification and breeding strategies. The Crop Journal8(6), 892-904. https://doi.org/10.1016/j.cj.2020.03.001

    Agrios, G. N. (2005). Plant pathology (5th ed.). Academic Press. ISBN: 9780120445653.

    Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., & Daszak, P. (2004). Emerging infectious diseases of plants: Pathogen pollution, climate change, and agrotechnology drivers. Trends in Ecology & Evolution, 19(10), 535-544. https://doi.org/10.1016/j.tree.2004.07.021

    Almeida, N. F., Yan, S., Cai, R., & Liu, H. (2017). Genome sequencing and molecular studies of plant-pathogenic bacteria. Annual Review of Phytopathology, 55, 459-482. https://doi.org/10.1146/annurev-phyto-080516-035357

    Borlaug, N. E. (1970). The Green Revolution: Peace and humanity. Nobel Prize Lecture.

    Borrelli, V. M. G., Brambilla, V., Rogowsky, P., Marocco, A., & Lanubile, A. (2018). The enhancement of plant disease resistance using CRISPR/Cas9 technology. Frontiers in Plant Science, 9, 1245. https://doi.org/10.3389/fpls.2018.01245

    Barbedo, J. G. A. (2019). Plant disease identification from individual lesions and spots using deep learning. Biosystems Engineering, 180, 96-107. https://doi.org/10.1016/j.biosystemseng.2019.02.002

    Baulcombe, D. (2004). RNA silencing in plants. Nature, 431(7006), 356-363. https://doi.org/10.1038/nature02874

    Chakraborty, S., & Newton, A. C. (2011). Climate change, plant diseases, and food security: An overview. Plant Pathology, 60(1), 2-14. https://doi.org/10.1111/j.1365-3059.2010.02411.x

    Cooke, D. E. L., & Cobb, A. C. (2012). Late blight of potatoes and tomatoes: An overview. Plant Pathology, 61(4), 10-18. https://doi.org/10.1111/j.1365-3059.2011.02564.x

    Chung, H., & Ottea, J. (2018). Sustainable agricultural practices for disease management. Sustainability, 10(11), 3965. https://doi.org/10.3390/su10113965

    Chisholm, S. T., Coaker, G., Day, B., & Staskawicz, B. J. (2006). Host-microbe interactions: Shaping the evolution of the plant immune response. Cell, 124(4), 803-814. https://doi.org/10.1016/j.cell.2006.02.008

    Choi, J., Cho, Y., Shim, E., Woo, H., & Kim, S. (2021). Real-time surveillance and prediction of infectious disease outbreaks using digital epidemiology. Journal of Medical Internet Research, 23(6), e25542. https://doi.org/10.2196/25542

    Clark, M. F., & Adams, A. N. (1977). Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology, 34(3), 475-483. https://doi.org/10.1099/0022-1317-34-3-475

    De Bary, A. (1861). Recherches sur le développement de quelques champignons parasitaires. Annales des Sciences Naturelles, Botanique, 16, 241-269.

    Elad, Y., Pertot, I., Cotes Prado, A. M., & Stewart, A. (2020). Plant disease management in the post-chemical agricultural world. Annual Review of Phytopathology, 58, 1-25. https://doi.org/10.1146/annurev-phyto-010820-012710

    Fry, W. E., & Goodwin, S. B. (2015). Late blight and the movement of pathogens in the 19th century. Plant Disease, 99(2), 152-160. https://doi.org/10.1094/PDIS-05-14-0487-FE

    Fry, W. E., & Goodwin, S. B. (2013). Plant disease management and control of plant diseases. Plant Disease Management in the 21st Century, 98(1), 1-18. https://doi.org/10.1094/PDIS-05-13-0510-FE

    Gebbers, R., & Adamchuk, V. I. (2010). Precision agriculture and food security. Science, 327(5967), 828-831. https://doi.org/10.1126/science.1183899

    González-Pérez, A., Soto, E., & Rodríguez, R. (2021). Nanotechnology in agricultural disease management. Current Opinion in Biotechnology, 68, 147-155. https://doi.org/10.1016/j.copbio.2020.10.010

    Gibson, D., White, J., & Yuen, S. (2017). GIS applications in plant disease management. Plant Disease, 101(9), 1692-1703. https://doi.org/10.1094/PDIS-12-16-1762-FE

    Garry, S., & Ali, F. (2020). Fusarium wilt and its impact on banana production: A global perspective. International Journal of Pest Management, 66(2), 174-181. https://doi.org/10.1080/09670874.2019.1652676

    García-Mas, J., & López, M. (2017). Bridging the gap between plant pathology research and practical application: A review. Agricultural Systems, 156, 100-112. https://doi.org/10.1016/j.agsy.2017.06.004

    Geiger, H. (2019). Ethical concerns in plant genetic modification: Public perception and ecological risks. Environmental Ethics in Agriculture, 26(2), 55-68. https://doi.org/10.1007/s10806-019-09812-3

    Huang, H. C., & Liang, S. Y. (2008). Mycoparasitism in biocontrol. Microbial Pathogenesis, 44(3), 200-205. https://doi.org/10.1016/j.micpath.2007.09.005

    Jaramillo, C., & Behnke, R. (2018). Bio-control agents in agriculture: Ecological considerations and future prospects. Plant Pathology Journal, 34(4), 143-152. https://doi.org/10.5423/PPJ.RW.06.2018.0100

    Jones, R., McRoberts, N., & Thompson, D. (2014). Fungicide Decision Support System for wheat rust management. Crop Protection, 62, 17-25. https://doi.org/10.1016/j.cropro.2014.04.011

    Juroszek, P., & von Tiedemann, A. (2013). Climate change and potential future risks through wheat diseases: A review. European Journal of Plant Pathology, 136(1), 21-33. https://doi.org/10.1007/s10658-012-0144-9

    Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323-329. https://doi.org/10.1038/nature05286

    Jose M. Melian, Adan Jimenez, Maria Díaz, Alejandro Morales, Pablo Horstrand, Raul Guerra, Sebastian Lopez, & Jose F. Lopez. (2021). Real-Time Hyperspectral Data Transmission for UAV-Based Acquisition Platforms. Remote Sensing Data Compression, 13(5), 850. https://doi.org/10.3390/rs13050850

    Khan, M., & Rizvi, T. F. (2021). Nanotechnology: Scope and applications in plant disease management. Plant Disease, 105(4), 847-856. https://doi.org/10.1094/PDIS-07-20-1453-FE

    Kellner, M. J., Koob, J. G., Gootenberg, J. S., Abudayyeh, O. O., Zhang, F. (2019). SHERLOCK: Nucleic acid detection with CRISPR nucleases. Nature Protocols, 14(10), 2986-3012. https://doi.org/10.1038/s41596-019-0210-2

    Katan, J. (1981). Solar heating (solarization) of soil for control of soilborne pests. Annual Review of Phytopathology, 19, 211-236. https://doi.org/10.1146/annurev.py.19.090181.001231

    Khan, M. I., Ali, S., & Iqbal, M. (2019). Gold nanoparticle-based diagnostic sensors for plant disease detection. Journal of Agricultural and Food Chemistry, 67(50), 13959-13967. https://doi.org/10.1021/acs.jafc.9b06156

    Kirk, A. (2003). Biological control of pests in sustainable agriculture. Springer. https://doi.org/10.1007/978-94-017-0292-1

    Luck, J., Spackman, M., Freeman, A., Trebicki, P., Griffiths, W., Finlay, K., & Chakraborty, S. (2011). Climate change and diseases of food crops. Plant Pathology, 60(1), 113-121. https://doi.org/10.1111/j.1365-3059.2010.02414.x

    Lopez, M. M., Rosello, M., & Llop, P. (2003). Advances in the detection of plant pathogenic bacteria and diagnosis of bacterial diseases of plants. Plant Pathology, 52(3), 271-285. https://doi.org/10.1046/j.1365-3059.2003.00835.x

    Lucas, J. A. (1998). Plant Pathology and Plant Pathogens (3rd ed.). Wiley.

    Mahlein, A. K. (2016). Plant disease detection by imaging sensors: Paradigms and perspectives. Annual Review of Phytopathology, 54, 689-711. https://doi.org/10.1146/annurev-phyto-080417-050100

    Massart, S., Martiny, B., Jijakli, M. H., & Rahioui, A. (2017). Next-generation sequencing applied to plant virology: Advances and challenges. Acta Horticulturae, 1167, 265-274. https://doi.org/10.17660/ActaHortic.2017.1167.34

    Mahlein, A. K. (2016). Plant disease detection by imaging sensors: Paradigms and perspectives. Annual Review of Phytopathology, 54, 689-711. https://doi.org/10.1146/annurev-phyto-080615-095951

    Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5), 634-663. https://doi.org/10.1111/1574-6976.12028

    Mundt, C., Brunner, P., & Johnson, A. (2017). Climate change and its impact on wheat diseases. Annual Review of Phytopathology, 55, 39-60. https://doi.org/10.1146/annurev-phyto-080516-035334

    Montanari, M., Bianco, M., & Lazzaro, A. (2020). The economic impact of Xylella fastidiosa on the olive industry. Phytopathology Reviews, 44(6), 812-823. https://doi.org/10.1007/s42161-020-00207-0

    McDonald, B. A., & Stukenbrock, E. H. (2016). Rapid emergence of pathogens in agro-ecosystems: Global threats to agricultural sustainability and food security. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1709), 20160026. https://doi.org/10.1098/rstb.2016.0026

    O’Neill, T., Kinzer, A., & Kothari, S. (2012). The Corn Disease Forecasting System. Plant Disease Management, 96(3), 497-507. https://doi.org/10.1094/PDIS-07-11-0503

    Oliver, J., Martyn, R., & Taylor, M. (2012). Xylella fastidiosa: Impact of an emerging pathogen. Phytopathology, 102(11), 1019-1029. https://doi.org/10.1094/PHYTO-02-12-0043-FI

    Oliver, N., Letouze, E., Sterly, H., Delataille, S., De Nadai, M., Lepri, B & Vinck, P. (2020). Mobile phone data for informing public health actions across different stages of the COVID-19 pandemic. Science Advances, 6(23), eabc0764.https://doi.org/10.1126/sciadv.abc0764

    Panchal, P., Mahato, S., Tripathi, P., & Nath, D. (2022). Application of machine learning in forecasting plant diseases using meteorological data. Frontiers in Agronomy, 4, 889045. https://doi.org/10.3389/fagro.2022.889045

    Ryu, C. M., Farag, M. A., & Ko, H. J. (2004). Bacterial volatiles and their impact on plant health and disease. Phytopathology, 94(10), 1210-1216. https://doi.org/10.1094/PHYTO.2004.94.10.1210

    Ristaino, J. B., et al., (2020). The persistent threat of emerging plant disease pandemics to global food security. Proceedings of the National Academy of Sciences, 117(49), 31738-31746.  https://doi.org/10.1073/pnas.2006576117

    Salathe, M., Bengtsson, L., Bodnar, T. J., Brewer, D. D., Brownstein, J. S., Buckee, C & Vespignani, A. (2012). Digital epidemiology. PLoS Computational Biology, 8(7), e1002616. https://doi.org/10.1371/journal.pcbi.1002616

    Sharma, P., Yadav, V., & Kumar, S. (2019). Nanomaterials for enhancing plant resistance to pathogens. Environmental Chemistry Letters, 17(3), 1343-1355. https://doi.org/10.1007/s10311-019-00876-w

    Sankaran, S., Khot, L. R., & Patil, A. P. (2010). A review of remote sensing technology in plant disease detection. Computational and Mathematical Methods in Medicine, 2010. https://doi.org/10.1155/2010/865629

    Snyder, W., Green, C., & Forbes, S. (2015). Modeling the risk of rice blast disease and fungicide application. Phytopathology, 105(7), 857-865. https://doi.org/10.1094/PHYTO-12-14-0377-R

    Santos, E., Rabelo, G., & Mendes, A. (2020). AI and machine learning in plant disease forecasting: New frontiers. Phytopathology Reviews, 32(5), 1034-1044.  https://doi.org/10.1094/PHYTO-12-19-0423-FI

    Stern, M. R., Hodges, T., & Elmore, A. (2016). Forecasting crop disease outbreaks: The application of integrated disease management systems. Crop Protection, 79, 60-69.

    Srinivasan, A., Rani, R. G., & Ramalingam, C. (2013). Silver nanoparticles as a tool for plant disease management. Environmental Toxicology and Pharmacology, 36(2), 700-705. https://doi.org/10.1016/j.etap.2013.08.012

    Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Trichoderma applications: Biological control, plant growth stimulation, and postharvest disease control. Phytopathology, 100(2), 80-90. https://doi.org/10.1094/PHYTO-100-2-0080

    Singh, N., Soni, P., & Misra, S. (2021). Biological control of plant pathogens using beneficial microorganisms. Microbial Pathogenesis, 158, 105016. https://doi.org/10.1016/j.micpath.2021.105016

    Singh, R. P., Hodson, D. P., Jin, Y., Lagudah, E. S., Ayliffe, M. A., Bhavani, S., & Njau, P. (2011). The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annual Review of Phytopathology, 49, 465-481.  https://doi.org/10.1146/annurev-phyto-072910-095423

    Song, W. Y., Wang, G. L., Chen, L. L., Kim, H. S., Pi, L. Y., Holsten, T., & Ronald, P. C. (1995). A receptor kinase-like protein encoded by the rice disease resistance gene Xa21. Science, 270(5243), 1804-1806. https://doi.org/10.1126/science.270.5243.1804

    Singh, R. P., Hodson, D. P., Jin, Y., Huerta-Espino, J., & Singh, P. K. (2019). Emerging threats to global wheat production: Lessons from stem rust epidemics. Plant Disease, 103(7), 1-8. https://doi.org/10.1094/PDIS-01-19-0115-FE

    Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., & Nelson, A. (2019). The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 3(3), 430–439. https://doi.org/10.1038/s41559-019-0802-y

    Scholthof, K. B. G. (2004). Tobacco mosaic virus: A model system for plant biology. Annual Review of Phytopathology, 42, 13–34. https://doi.org/10.1146/annurev.phyto.42.040803.140320

    Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., & Nelson, A. (2019). The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 3(3), 430–439. https://doi.org/10.1038/s41559-019-0802-y

    Vurukonda, S. S. K., Vardharajula, S., Shrivastava, M., & Kavi Kishor, P. B. (2016). Plant growth promoting rhizobacteria: A critical review. Biological Control, 98, 63-84. https://doi.org/10.1016/j.biocontrol.2016.03.008

    Ward, E., Foster, S. J., Fraaije, B. A., & McCartney, H. A. (2004). Plant pathogen diagnostics: Immunological and nucleic acid-based approaches. Annals of Applied Biology, 145(1), 1-16. https://doi.org/10.1111/j.1744-7348.2004.tb00369.x

    Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., & Qiu, J. L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32(9), 947-951. https://doi.org/10.1038/nbt.2959

    Wang, L., Zhang, Y., Zhang, Y., Zhu, X., & Zhang, X. (2020). Machine learning-based prediction of infectious disease outbreaks: A review. PLoS Pathogens, 16(10), e1008982. https://doi.org/10.1371/journal.ppat.1008982

    Wubetu Barud Demilie, (2024). Plant disease detection and classification techniques: a comparative study of the performances. Journal of Big Data, 11(1), 1-43. https://doi.org/10.1186/s40537-023-00863-9

    Zadoks, J. C. (2008). The origin of plant pathology. Annual Review of Phytopathology, 46, 1–23.  https://doi.org/10.1146/annurev.phyto.46.120407.090200

    Zhang, Y., Liang, Z., Zong, Y., Wang, Y., Liu, J., Chen, K., & Gao, C. (2017). Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications, 8, 14261. https://doi.org/10.1038/ncomms14261

    Zhang, X., & Wei, Y. (2021). From research to practice: Translating plant pathology discoveries into field applications. Crop Protection, 98, 100-109. https://doi.org/10.1016/j.cropro.2017.04.007