Harmony in Agriculture - Harnessing Green Technologies for Eco-friendly Insect Pest Management | Doi : 10.37446/edibook082025/87-99

PAID ACCESS | Published on : 02-Apr-2025

Use of Entomopathogen for the Management of Insect Pests in Vegetable Crops

  • Yamini Rajendran
  • Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India – 641 003.
  • Nandha Saminathan
  • Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India – 641 003.

Abstract

The sustainable management of insect pests in vegetable crops is crucial for agricultural productivity and environmental health. Although the traditional chemical pesticides are efficient, in some cases exhibits greater risk to human beings, beneficial organisms as well as vegetable ecosystems. This has consequently led to the increased interest in alternative pest management strategies particularly the use of entomopathogens that are microorganisms which induce infections naturally among insect pest. Entomopathogens are beneficial microorganisms that are viable and pathogenic to insect pest. The entomopathogen species viz; fungi, bacteria, viruses and nematodes, infect a variety of insect pests and play an important role in vegetable ecosystem used in the strategy of insect pest management. Case studies on successful applications of entomopathogen-based pest management with a wide range of vegetable crops have also been included. These examples will emphasize the possibility of the use of entomopathogens in reducing chemical pesticides in agriculture, thereby pursuing the goal of sustainability. Entomopathogens are one of the most effective and safe biological agents for the management of vegetable crop insect pests. Further research and development of the appropriate entomopathogen based formulations will effectively integrate their potential into integrated pest management systems of vegetable agro-ecosystems. This chapter discusses the use of entomopathogens, including bacteria, fungi, viruses and nematodes in controlling insect pests on vegetable crops. It explains the different kinds of entomopathogens, mechanisms and their target specificity to pests.

Keywords

Biological control, Integrated Pest Management, Entomopathogens, Vegetable ecosystem, Eco-friendly, Sustainable agriculture

References

  • Amizadeh, M., Hejazi, M. J., Niknam, G., & Askari-Saryazdi, G. (2019). Interaction between the entomopathogenic nematode, Steinernema feltiae and selected chemical insecticides for management of the tomato leafminer, Tuta absoluta. Biocontrol64, 709-721.

    Baker, D., Rice, S., Leemon, D., Godwin, R., & James, P. (2020). Development of a mycoinsecticide bait formulation for the control of house flies, Musca domestica L. Insects11(1), 47.

    Batalla-Carrera, L., Morton, A., & García-del-Pino, F. (2010). Efficacy of entomopathogenic nematodes against the tomato leafminer Tuta absoluta in laboratory and greenhouse conditions. BioControl55, 523-530.

    Bedding, R. A. (1984). Large scale production, storage and transport of the insect‐parasitic nematodes Neoaplectana spp. and Heterorhabditis spp. Annals of applied biology104(1), 117-120.

    Bedding, R. A. (1984). Large scale production, storage and transport of the insect‐parasitic nematodes Neoaplectana spp. and Heterorhabditis spp. Annals of applied biology104(1), 117-120.

    Bohatá, A., Folorunso, E. A., Lencová, J., Osborne, L. S., & Mraz, J. (2024). Control of sweet potato whitefly (Bemisia tabaci) using entomopathogenic fungi under optimal and suboptimal relative humidity conditions. Pest Management Science80(3), 1065-1075.

    Brancini GTP, Rodrigues A, Lopes RB, Maffia LA, Zauza EAV. 2018. Ascorbic acid as a UV protector to control fungi associated with cabbage seeds. Crop Protection. 105: 41-48.

    Cameron, P. J. (2007). Factors influencing the development of integrated pest management (IPM) in selected vegetable crops: a review. New Zealand Journal of Crop and Horticultural Science35(3), 365-384.

    Canassa, F., Tall, S., Moral, R. A., de Lara, I. A., Delalibera Jr, I., & Meyling, N. V. (2019). Effects of bean seed treatment by the entomopathogenic fungi Metarhizium robertsii and Beauveria bassiana on plant growth, spider mite populations and behavior of predatory mites. Biological Control132, 199-208.

    Chandler, D., Davidson, G., & Jacobson, R. J. (2005). Laboratory and glasshouse evaluation of entomopathogenic fungi against the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), on tomato, Lycopersicon esculentum. Biocontrol Science and Technology15(1), 37-54.

    Charles, J. F., Silva-Filha, M. H., & Nielsen-LeRoux, C. (2000). Mode of action of Bacillus sphaericus on mosquito larvae: incidence on resistance. Entomopathogenic bacteria: from laboratory to field application, 237-252.

    Dara, S. K. (2017). Entomopathogenic microorganisms: modes of action and role in IPM. Agriculture and Natural Blogs, University of California, 7p.

    Dowling, A., & Waterfield, N. R. (2007). Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon49(4), 436-451.

    Dubovskiy, I. M., Grizanova, E. V., Tereshchenko, D., Krytsyna, T. I., Alikina, T., Kalmykova, G., ... & Coates, C. J. (2021). Bacillus thuringiensis spores and Cry3A toxins act synergistically to expedite colorado potato beetle mortality. Toxins13(11), 746.

    Elek, J., & Beveridge, N. (1999). Effect of a Bacillus thuringiensis subsp. tenebrionis insecticidal spray on the mortality, feeding, and development rates of larval Tasmanian Eucalyptus leaf beetles (Coleoptera: Chrysomelidae). Journal of Economic Entomology92(5), 1062-1071.

    Garrido-Jurado, I., Resquín-Romero, G., Yousef-Naef, M., Ríos-Moreno, A., & Quesada-Moraga, E. (2020). Soil drenching with entomopathogenic fungi for control of the soil-dwelling life stages and adults of the same generation of Spodoptera littoralis (Boisd.)(Lepidoptera: Noctuidae). Bulletin of entomological research110(2), 242-248.

    Gaurav, S. S., Prasad, C. S., & Tyagi, A. (2010). Field evaluation of Bacillus thuringiensis for control of Plutella xylostella (L.) on Cauliflower. Annals of Plant Protection Sciences18(1), 141-143.

    González-Cabrera, J., Mollá, O., Montón, H., & Urbaneja, A. (2011). Efficacy of Bacillus thuringiensis (Berliner) in controlling the tomato borer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). BioControl56, 71-80.

    Gupta, R., Keppanan, R., Leibman-Markus, M., Rav-David, D., Elad, Y., Ment, D., & Bar, M. (2022). The entomopathogenic fungi Metarhizium brunneum and Beauveria bassiana promote systemic immunity and confer resistance to a broad range of pests and pathogens in tomato. Phytopathology®112(4), 784-793.

    Habriantono, B., Suharto, S., Wagiyana, W., Hoesain, M., Jatmiko, M. W., Prastowo, S., ... & Alfarisy, F. K. (2023). Toxicology of Nuclear polyhedrosis virus, Botanical and Synthetic pesticides on Mortality Rate of Crocidolomia binotalis (Zeller). Baghdad Science Journal20(1), 0017-0017.

    Abhijith, R. L., Akash, A. U., Kumar, A. P., & Akhil, G. L. Insect-microbe Interactions: Mutualism, Pathogenesis and Symbiosis. Entomology, 318.

    Ismailov, V. Y., Pushnya, M. V., Snesareva, E. G., Komantsev, A. A., & Tsygichko, A. A. (2022). Evaluating a newer nuclear polyhedrosis virus strain against the cotton moth Helicoverpa armigera on soybean (Glycine max). Research on Crops23(2), 442-448.

    Jiang, Y., & Wang, J. (2023). The registration situation and use of mycopesticides in the world. Journal of Fungi9(9), 940.

    Källqvist, T., Dirven, H., Gjøen, T., Tronsmo, A., Yazdankhah, S. P., Rivedal, E., ... & Sverdrup, L. E. (2016). Risk assessment of the biological plant protection product Turex 50 WG, with the organism Bacillus thuringiensis ssp. aizawai CG-91. Opinion of the Panel on Plant Protection Products of the Norwegian Scientific Committee for Food Safety. VKM Report.

    Khun, K. K., Wilson, B. A., Stevens, M. M., Huwer, R. K., & Ash, G. J. (2020). Integration of entomopathogenic fungi into IPM programs: Studies involving weevils (Coleoptera: Curculionoidea) affecting horticultural crops. Insects11(10), 659.

    Lacey, L. A., & Kaya, H. K. (Eds.). (2007). Field manual of techniques in invertebrate pathology: application and evaluation of pathogens for control of insects and other invertebrate pests. Springer Science & Business Media.

    Kunjwal, N., & Srivastava, R. M. (2018). Insect pests of vegetables. Pests and their Management, 163-221.

    López Quispe, E. H., Gil Bacilio, J. L., & Coáguila, P. P. (2019). Effectiveness of granulosis virus against the attack of Phthorimaea operculella (Zeller) in potato tubes during storage.

    Lulamba, T. E. (2021). Isolation, Identification and Genomic Study of an Entomopathogenic Nematode Symbiotic Bacterium and the Antimicrobial Activity of its Secondary Metabolite’s Crude Extracts. University of Johannesburg (South Africa).

    Martin, P. A., Hirose, E., & Aldrich, J. R. (2007). Toxicity of Chromobacterium subtsugae to southern green stink bug (Heteroptera: Pentatomidae) and corn rootworm (Coleoptera: Chrysomelidae). Journal of Economic Entomology100(3), 680-684.

    Mohammed, A. A., Kadhim, J. H., & Kamaluddin, Z. N. (2018). Selection of highly virulent entomopathogenic fungal isolates to control the greenhouse aphid species in Iraq. Egyptian Journal of Biological Pest Control28, 1-7.

    Garcia, F. M. (2006). Analysis of the Spatio–temporal Distribution of Helicoverpa armigera Hb. in a Tomato Field using a Stochastic Approach. Biosystems Engineering93(3), 253-259.

    Morris, O. N., & Converse, V. (1991). EFFECTIVENESS OF STEINERNEMATID AND HETERORHABDITID NEMATODES AGAINST NOCTUID, PYRALID, AND GEOMETRID SPECIES IN SOIL1. The Canadian Entomologist123(1), 55-61.

    Mukherjee, S., & Ray, S. (Eds.). (2024). Nematodes-Ecology, Adaptation and Parasitism: Ecology, Adaptation and Parasitism. BoD–Books on Demand.

    MZ, M., Fiaz, M., Ma, C. S., & Afzal, M. (2017). Entomopathogenicity of three muscardine fungi, Beauveria bassiana, Isaria fumosorosea and Metarhizium anisopliae, against the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Egyptian Journal of Biological Pest Control27(2).

    Noopur, K., Chauhan, J. K., Walia, S. S., Verma, M. R., Dhar, U., Choudhary, S., & Chikkeri, S. S. (2023). Constraints in vegetable production in India: A review. Indian Res. J. Ext. Edu3(3), 14-19.

    Pandey, A. (2024). Impact of Bacillus thuringiensis var. israelensis (VCRC B17) for Mosquito Larvae Control. Journal of Health and Social Welfare8(1).

    Portillo-Aguilar, C., Villani, M. G., Tauber, M. J., Tauber, C. A., & Nyrop, J. P. (1999). Entomopathogenic nematode (Rhabditida: Heterorhabditidae and Steinernematidae) response to soil texture and bulk density. Environmental Entomology28(6), 1021-1035.

    Půža, V., Nermuť, J., Konopická, J., & Skoková Habuštová, O. (2021). Efficacy of the applied natural enemies on the survival of colorado potato beetle adults. Insects12(11), 1030.

    Shapiro-Ilan, D. I., Gouge, D. H., Piggott, S. J., & Fife, J. P. (2006). Application technology and environmental considerations for use of entomopathogenic nematodes in biological control. Biological control38(1), 124-133.

    Sharma, R., & Sharma, P. (2021). Fungal entomopathogens: a systematic review. Egyptian Journal of Biological Pest Control31, 1-13.

    Shivalingaswamy, T. M., & Satpathy, S. (2007). Integrated pest management in vegetable crops. Entomology: Novel Approaches, Jain, PC and Bhargava, MC (Eds.), New India Publishing Agency, New Delhi, India, 353-375.

    Silva, A. P. A. P., Alves, R. T., Lima, E. A. L. A., & Lima, V. L. D. M. (2014). Bioformulations in pest control–a review. Annual Research & Review in Biology5(6), 535-543.

    Singh, K. I., Debbarma, A., & Singh, H. R. (2015). Field efficacy of certain microbial insecticides against Plutella xylostella Linnaeus and Pieris brassicae Linnaeus under cabbage-crop-ecosystem of Manipur.

    Sousa, A. L., Rodriguez-Saona, C., Holdcraft, R., Kyryczenko-Roth, V., & Koppenhöfer, A. M. (2021). Entomopathogenic Nematodes for the Management of Plum Curculio in Highbush Blueberry. Biology11(1), 45.

    Stauderman K, Avery P, Aristizábal L, Arthurs S. 2012. Evaluation of Isaria fumosorosea (Hypocreales: Cordycipitaceae) for control of the Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae). Biocontrol science and technology, 22:747-761.

    Treverrow, N. L., & Bedding, R. A. (1993). Development of a system for the control of the banana weevil borer, Cosmopolites sordidus with entomopathogenic nematodes. Nematodes and the biological control of insect pests, 41-47.

    Vargas, G., Velazquez-Hernandez, Y., Daniel Greene, A., Yang, X., & Revynthi, A. M. (2024). Entomopathogenic nematodes to control the hibiscus bud weevil Anthonomus testaceosquamosus (Coleoptera: Curculionidae), above ground and on soil surface. Biocontrol69(1), 91-101.          

    Vega, F. E., Meyling, N. V., Luangsa-ard, J. J., & Blackwell, M. (2012). Fungal entomopathogens. Insect pathology2, 171-220.

    Wang, Z., Dhakal, M., Vandenbossche, B., Dörfler, V., Barg, M., Strauch, O., ... & Molina, C. (2024). Enhancing mass production of Heterorhabditis bacteriophora: influence of different bacterial symbionts (Photorhabdus spp.) and inoculum age on Dauer Juvenile recovery. World Journal of Microbiology and Biotechnology40(1), 13.

    Wei, Q. Y., Li, Y. Y., Xu, C., Wu, Y. X., Zhang, Y. R., & Liu, H. (2020). Endophytic colonization by Beauveria bassiana increases the resistance of tomatoes against Bemisia tabaci. Arthropod-plant interactions14(3), 289-300.

    Wu, S. Y., Tang, H., Zhang, C., Tang, F., Lin, J., Wang, Y., ... & Hou, Y. (2023). Potential of entomopathogenic nematode‐infected insect cadavers for the biocontrol of the red imported fire ant Solenopsis invicta. Pest Management Science79(11), 4383-4389.

    Yasin, M., Qazi, M. S., Wakil, W., & Qayyum, M. A. (2020). Evaluation of nuclear polyhedrosis virus (NPV) and emamectin benzoate against Spodoptera litura (F.) (Lepidoptera: Noctuidae). Egyptian Journal of Biological Pest Control30, 1-6.

    Zhang, J., Hodgman, T. C., Krieger, L., Schnetter, W., & Schairer, H. U. (1997). Cloning and analysis of the first cry gene from Bacillus popilliae. Journal of bacteriology179(13), 4336-4341.