The multi-omics approach, encompassing genomics, transcriptomics, proteomics, and metabolomics, has revolutionized insect research by enabling a comprehensive view of the molecular interactions that drive insect adaptation, evolution, and ecological roles. Insect species, as the most diverse group of organisms, offer significant potential for understanding evolutionary processes, and multi-omics allows researchers to dissect these processes at multiple molecular levels. Through the integration of bioinformatics tools, complex datasets from different omics platforms can be aligned and interpreted to reveal patterns and networks within insect biology. These tools are essential for managing large volumes of biological data and for visualizing interactions across genes, proteins, and metabolites. In agricultural and environmental contexts, multi-omics enables a detailed exploration of plant-insect interactions, revealing signaling pathways and molecular dialogues that impact pest control and crop resistance. In medical entomology, the study of insect vectors is enhanced, helping researchers understand pathogen transmission and develop vector control strategies. Moreover, multi-omics allows for genome-wide analyses, identification of insect resistance genes, and the development of insect-targeted interventions. This integrated, data-driven approach thus offers unprecedented insights into insect biology, promising advancements in pest management, evolutionary study, biodiversity conservation, and the control of insect-borne diseases.
Insect, Multi-omics, Data integration, Genomics, Proteomics, Transcriptomics, Metabolomics, Entomological database
Abdulla Agha, W. N., Muhammad, H. M., & Taha, K. M. (2023). Phylogenetic analysis among some species of aphids (Homoptera: Aphididae) using DNA sequencing molecular technique. Tikrit Journal for Agricultural Sciences, 23(3), 71–78.
Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, P. G., ... & Venter, J. C. (2000). The genome sequence of Drosophila melanogaster. Science, 287(5461), 2185–2195. https://doi.org/10.1126/science.287.5461.2185
Altman, R. B. (2004). Building successful biological databases. Briefings in Bioinformatics, 5(1), 4–5. https://doi.org/10.1093/bib/5.1.4
Atijegbe, S. R., Mansfield, S., Ferguson, C. M., Worner, S. P., & Rostás, M. (2020). Host range expansion of an endemic insect herbivore is associated with high nitrogen and low fibre content in exotic pasture plants. Journal of Chemical Ecology, 46(6), 544–556. https://doi.org/10.1007/s10886-020-01186-3
Attwood, T. K., Gisel, A., Eriksson, N. E., & Bongcam-Rudloff, E. (2011). Concepts, historical milestones and the central place of bioinformatics in modern biology: A European perspective. In Bioinformatics – Trends and Methodologies (pp. 1–27). IntechOpen.
Braga, M. P., Janz, N., Nylin, S., Ronquist, F., & Landis, M. J. (2021). Phylogenetic reconstruction of ancestral ecological networks through time for pierid butterflies and their host plants. Ecology Letters, 24(10), 2134–2145. https://doi.org/10.1111/ele.13798
Carolan, J. C., Caragea, D., Reardon, K. T., Mutti, N. S., Dittmer, N., Pappan, K., … Edwards, O. R. (2011). Predicted effector molecules in the salivary secretome of the pea aphid (Acyrthosiphon pisum): A dual transcriptomic/proteomic approach. Journal of Proteome Research, 10(4), 1505–1518. https://doi.org/10.1021/pr100881q
Casas-Vila, N., Bluhm, A., Sayols, S., Dinges, N., Dejung, M., Altenhein, T., … Butter, F. (2017). The developmental proteome of Drosophila melanogaster. Genome Research, 27(7), 1273–1285. https://doi.org/10.1101/gr.213694.116
Chen, X., Xia, J., Shang, Q., Song, D., & Gao, X. (2019). UDP-glucosyltransferases potentially contribute to imidacloprid resistance in Aphis gossypii Glover based on transcriptomic and proteomic analyses. Pesticide Biochemistry and Physiology, 159, 98–106. https://doi.org/10.1016/j.pestbp.2019.06.012
Cornette, R., Gusev, O., Nakahara, Y., Shimura, S., Kikawada, T., & Okuda, T. (2015). Chironomid midges (Diptera: Chironomidae) show extremely small genome sizes. Zoological Science, 32(3), 248–254. https://doi.org/10.2108/zs140249
Cui, G., Sun, R., Veeran, S., Shu, B., Yuan, H., & Zhong, G. (2020). Combined transcriptomic and proteomic analysis of harmine on Spodoptera frugiperda Sf9 cells to reveal the potential resistance mechanism. Journal of Proteomics, 211, 103573. https://doi.org/10.1016/j.jprot.2019.103573
Dawkar, V. V., Chikate, Y. R., More, T. H., Gupta, V. S., & Giri, A. P. (2016). The expression of proteins involved in digestion and detoxification are regulated in Helicoverpa armigera to cope with chlorpyrifos insecticide. Insect Science, 23(1), 68–77. https://doi.org/10.1111/1744-7917.12175
Ellegren, H. (2014). Genome sequencing and population genomics in non-model organisms. Trends in Ecology & Evolution, 29(1), 51–63. https://doi.org/10.1016/j.tree.2013.09.008
Elsik, C. G., Tayal, A., Unni, D. R., Burns, G. W., & Hagen, D. E. (2018). Hymenoptera genome database: Using HymenopteraMine to enhance genomic studies of hymenopteran insects. In Eukaryotic Genomic Databases: Methods and Protocols (pp. 513–556). Springer. https://doi.org/10.1007/978-1-4939-7737-6_20
Francis, F., Guillonneau, F., Leprince, P., De Pauw, E., Haubruge, E., Jia, L., & Goggin, F. L. (2010). Tritrophic interactions among Macrosiphum euphorbiae aphids, their host plants and endosymbionts: Investigation by a proteomic approach. Journal of Insect Physiology, 56(6), 575–585. https://doi.org/10.1016/j.jinsphys.2009.12.006
Gallon, M. E., Silva-Junior, E. A., & Gobbo-Neto, L. (2024). GC–MS-based metabolomics unravels metabolites across larval development and diapause of a specialist insect. Chemistry & Biodiversity, 21(3), e202301779. https://doi.org/10.1002/cbdv.202301779
Gauthier, J. P., Legeai, F., Zasadzinski, A., Rispe, C., & Tagu, D. (2007). AphidBase: A database for aphid genomic resources. Bioinformatics, 23(6), 783–784. https://doi.org/10.1093/bioinformatics/btl671
Goodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming of age: Ten years of next-generation sequencing technologies. Nature Reviews Genetics, 17(6), 333–351. https://doi.org/10.1038/nrg.2016.49
Gramates, L. S., Agapite, J., Attrill, H., Calvi, B. R., Crosby, M. A., Dos Santos, G., … Strelets, V. B. (2022). FlyBase: A guided tour of highlighted features. Genetics, 220(4), iyac035. https://doi.org/10.1093/genetics/iyac035
Graw, S., Chappell, K., Washam, C. L., Gies, A., Bird, J., Robeson, M. S. II, & Byrum, S. D. (2021). Multi-omics data integration considerations and study design for biological systems and disease. Molecular Omics, 17(2), 170–185. https://doi.org/10.1039/D0MO00176G
Grumbling, G., & Strelets, V. (2006). FlyBase: Anatomical data, images and queries. Nucleic Acids Research, 34(suppl 1), D484–D488. https://doi.org/10.1093/nar/gkj068
Guignon, V., Droc, G., Alaux, M., Baurens, F. C., Garsmeur, O., Poiron, C., … Bocs, S. (2012). Chado controller: Advanced annotation management with a community annotation system. Bioinformatics, 28(7), 1054–1056. https://doi.org/10.1093/bioinformatics/bts076
Gutierrez Reyes, C. D., Alejo-Jacuinde, G., Perez Sanchez, B., Chavez Reyes, J., Onigbinde, S., Mogut, D., ... & Mechref, Y. (2024). Multi omics applications in biological systems. Current Issues in Molecular Biology, 46(6), 5777–5793. https://doi.org/10.3390/cimb46060287
Hajirnis, N., & Mishra, R. K. (2021). Homeotic genes: Clustering, modularity, and diversity. Frontiers in Cell and Developmental Biology, 9, 718308. https://doi.org/10.3389/fcell.2021.718308
Holt, R. A., Subramanian, G. M., Halpern, A., Sutton, G. G., Charlab, R., Nusskern, D. R., ... & Hoffman, S. L. (2002). The genome sequence of the malaria mosquito Anopheles gambiae. Science, 298(5591), 129–149. https://doi.org/10.1126/science.1076181
Huang, H. J., Lu, J. B., Li, Q., Bao, Y. Y., & Zhang, C. X. (2018). Combined transcriptomic/proteomic analysis of salivary gland and secreted saliva in three planthopper species. Journal of Proteomics, 172, 25–35. https://doi.org/10.1016/j.jprot.2017.10.020
Idle, J. R., & Gonzalez, F. J. (2007). Metabolomics. Cell Metabolism, 6(5), 348–351. https://doi.org/10.1016/j.cmet.2007.10.005
Iquebal, M. A., Jaiswal, S., Mukhopadhyay, C. S., Sarkar, C., Rai, A., & Kumar, D. (2015). Applications of bioinformatics in plant and agriculture. In PlantOmics: The omics of plant science (pp. 755–789). Springer.
Kamps, R., Brandão, R. D., van den Bosch, B. J., Paulussen, A. D., Xanthoulea, S., Blok, M. J., & Romano, A. (2017). Next-generation sequencing in oncology: Genetic diagnosis, risk prediction and cancer classification. International Journal of Molecular Sciences, 18(2), 308. https://doi.org/10.3390/ijms18020308
Kantsa, A., Raguso, R. A., Lekkas, T., Kalantzi, O. I., & Petanidou, T. (2019). Floral volatiles and visitors: A meta-network of associations in a natural community. Journal of Ecology, 107(6), 2574–2586. https://doi.org/10.1111/1365-2745.13205
Kapheim, K. M., Pan, H., Li, C., Salzberg, S. L., Puiu, D., Magoc, T., ... & Zhang, G. (2015). Genomic signatures of evolutionary transitions from solitary to group living. Science, 348(6239), 1139–1143. https://doi.org/10.1126/science.aaa4788
Kapli, P., Yang, Z., & Telford, M. J. (2020). Phylogenetic tree building in the genomic age. Nature Reviews Genetics, 21(7), 428–444. https://doi.org/10.1038/s41576-020-0233-0
Kim, S., Lee, J. W., & Park, Y. S. (2020). The application of next-generation sequencing to define factors related to oral cancer and discover novel biomarkers. Life, 10(10), 228.
Kirsch, R., Wielsch, N., Vogel, H., Svatoš, A., Heckel, D. G., & Pauchet, Y. (2012). Combining proteomics and transcriptome sequencing to identify active plant-cell-wall-degrading enzymes in a leaf beetle. BMC Genomics, 13, 1–15. https://doi.org/10.1186/1471-2164-13-587
Legeai, F., Shigenobu, S., Gauthier, J. P., Colbourne, J., Rispe, C., Collin, O., … Tagu, D. (2010). AphidBase: A centralized bioinformatic resource for annotation of the pea aphid genome. Insect Molecular Biology, 19(suppl 2), 5–12. https://doi.org/10.1111/j.1365-2583.2009.00930.x
Li, B., Predel, R., Neupert, S., Hauser, F., Tanaka, Y., Cazzamali, G., … Park, Y. (2008). Genomics, transcriptomics, and peptidomics of neuropeptides and protein hormones in the red flour beetle Tribolium castaneum. Genome Research, 18(1), 113–122. https://doi.org/10.1101/gr.6714008
Li, H., Tahir ul Qamar, M., Yang, L., Liang, J., You, J., & Wang, L. (2023). Current progress, applications and challenges of multi-omics approaches in sesame genetic improvement. International Journal of Molecular Sciences, 24(4), 3105. https://doi.org/10.3390/ijms24043105
Liu, G., Liu, W., Zhao, R., He, J., Dong, Z., Chen, L., … Li, X. (2021). Genome-wide identification and gene-editing of pigment transporter genes in the swallowtail butterfly Papilio xuthus. BMC Genomics, 22(1), 1–18. https://doi.org/10.1186/s12864-021-07462-y
Liu, X., & Locasale, J. W. (2017). Metabolomics: A primer. Trends in Biochemical Sciences, 42(4), 274–284. https://doi.org/10.1016/j.tibs.2017.01.004
Luikart, G., Kardos, M., Hand, B. K., Rajora, O. P., Aitken, S. N., & Hohenlohe, P. A. (2019). Population genomics: Advancing understanding of nature. In O. P. Rajora (Ed.), Population genomics: Concepts, approaches and applications (pp. 3–79). Springer. https://doi.org/10.1007/13836_2018_60
Ma, R., Rangel, J., & Grozinger, C. M. (2019). Honey bee (Apis mellifera) larval pheromones may regulate gene expression related to foraging task specialization. BMC Genomics, 20(1), 592. https://doi.org/10.1186/s12864-019-5942-2
Machado, I., & Gambino, D. (2024). Metallomics: An essential tool for the study of potential antiparasitic metallodrugs. ACS Omega, 9(14), 15744–15752. https://doi.org/10.1021/acsomega.3c10119
Marie, A., Holzmuller, P., Tchioffo, M. T., Rossignol, M., Demettre, E., Seveno, M., … Cornelie, S. (2014). Anopheles gambiae salivary protein expression modulated by wild Plasmodium falciparum infection: Highlighting of new antigenic peptides as candidates of An. gambiae bites. Parasites & Vectors, 7, 1–13. https://doi.org/10.1186/1756-3305-7-424
Martin, A., Papa, R., Nadeau, N. J., Hill, R. I., Counterman, B. A., Halder, G., ... & Reed, R. D. (2012). Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand. Proceedings of the National Academy of Sciences, 109(31), 12632–12637. https://doi.org/10.1073/pnas.1204800109
Milward, E. A., Shahandeh, A., Heidari, M., Johnstone, D. M., Daneshi, N., & Hondermarck, H. (2016). Transcriptomics. In Encyclopedia of cell biology (Vol. 4, pp. 160–165). Academic Press. https://doi.org/10.1016/B978-0-12-394447-4.40029-5
Misof, B., Liu, S., Meusemann, K., Peters, R. S., Donath, A., Mayer, C., ... & Zhou, X. (2014). Phylogenomics resolves the timing and pattern of insect evolution. Science, 346(6210), 763–767. https://doi.org/10.1126/science.1257570
Moor, A. E., & Itzkovitz, S. (2017). Spatial transcriptomics: Paving the way for tissue-level systems biology. Current Opinion in Biotechnology, 46, 126–133. https://doi.org/10.1016/j.copbio.2017.02.004
Mount, D. W. (2007). Using the basic local alignment search tool (BLAST). Cold Spring Harbor Protocols, 2007(7), pdb.top17. https://doi.org/10.1101/pdb.top17
Muto-Fujita, A., Takemoto, K., Kanaya, S., Nakazato, T., Tokimatsu, T., Matsumoto, N., … Kotera, M. (2017). Data integration aids understanding of butterfly–host plant networks. Scientific Reports, 7, 43368. https://doi.org/10.1038/srep43368
Nayduch, D., Fryxell, R. T., & Olafson, P. U. (2019). Molecular tools used in medical and veterinary entomology. In R. Wall & D. M. Vosshall (Eds.), Medical and veterinary entomology (2nd ed., pp. 673–694). Academic Press. https://doi.org/10.1016/B978-0-12-814043-7.00030-2
Nguyen, T. T. A., Michaud, D., & Cloutier, C. (2007). Proteomic profiling of aphid Macrosiphum euphorbiae responses to host-plant-mediated stress induced by defoliation and water deficit. Journal of Insect Physiology, 53(6), 601–611. https://doi.org/10.1016/j.jinsphys.2007.02.014
Palli, S. R., Bai, H., & Wigginton, J. (2012). Insect genomics. In L. I. Gilbert (Ed.), Insect molecular biology and biochemistry (pp. 1–29). Academic Press.
Picard, M., Scott-Boyer, M. P., Bodein, A., Périn, O., & Droit, A. (2021). Integration strategies of multi-omics data for machine learning analysis. Computational and Structural Biotechnology Journal, 19, 3735–3746. https://doi.org/10.1016/j.csbj.2021.06.039
Pizzorno, M. C., Field, K., Kobokovich, A. L., Martin, P. L., Gupta, R. A., Mammone, R., Rovnyak, D., & Capaldi, E. A. (2021). Transcriptomic responses of the honey bee brain to infection with deformed wing virus. Viruses, 13(2), 287. https://doi.org/10.3390/v13020287
Poelchau, M., Childers, C., Moore, G., Tsavatapalli, V., Evans, J., Lee, C. Y., … Hackett, K. (2015). The i5k Workspace@NAL—Enabling genomic data access, visualization and curation of arthropod genomes. Nucleic Acids Research, 43(D1), D714–D719. https://doi.org/10.1093/nar/gku983
Poma, G., Cuykx, M., Da Silva, K. M., Iturrospe, E., van Nuijs, A. L. N., van Huis, A., & Covaci, A. (2022). Edible insects in the metabolomics era: First steps towards the implementation of entometabolomics in food systems. Trends in Food Science & Technology, 119, 371–377. https://doi.org/10.1016/j.tifs.2021.12.034
Raj, A., Van Den Bogaard, P., Rifkin, S. A., Van Oudenaarden, A., & Tyagi, S. (2008). Imaging individual mRNA molecules using multiple singly labeled probes. Nature Methods, 5(10), 877–879. https://doi.org/10.1038/nmeth.1253
Richards, S. (2015). It's more than stamp collecting: How genome sequencing can unify biological research. Trends in Genetics, 31(7), 411–421. https://doi.org/10.1016/j.tig.2015.04.007
Rich-Griffin, C., Stechemesser, A., Finch, J., Lucas, E., Ott, S., & Schäfer, P. (2020). Single-cell transcriptomics: A high-resolution avenue for plant functional genomics. Trends in Plant Science, 25(2), 186–197. https://doi.org/10.1016/j.tplants.2019.10.008
Rodriques, S. G., Stickels, R. R., Goeva, A., Martin, C. A., Murray, E., Vanderburg, C. R., ... & Macosko, E. Z. (2019). Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science, 363(6434), 1463–1467. https://doi.org/10.1126/science.aaw1219
Rokas, A., & Abbot, P. (2009). Harnessing genomics for evolutionary insights. Trends in Ecology & Evolution, 24(4), 192–200. https://doi.org/10.1016/j.tree.2008.11.004
Roychowdhury, R., Das, S. P., Gupta, A., Parihar, P., Chandrasekhar, K., Sarker, U., Kumar, A., Ramrao, D. P., & Sudhakar, C. (2023). Multi-omics pipeline and omics-integration approach to decipher plant abiotic stress tolerance responses. Genes, 14(6), 1281. https://doi.org/10.3390/genes14061281
Ruppert, K. M., Kline, R. J., & Rahman, M. S. (2019). Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Global Ecology and Conservation, 17, e00547. https://doi.org/10.1016/j.gecco.2019.e00547
Ryabova, A., Cornette, R., Cherkasov, A., Watanabe, M., Okuda, T., Shagimardanova, E., … Gusev, O. (2020). Combined metabolome and transcriptome analysis reveals key components of complete desiccation tolerance in an anhydrobiotic insect. Proceedings of the National Academy of Sciences, 117(32), 19209–19220. https://doi.org/10.1073/pnas.2000223117
Si, W., Wang, Q., Li, Y., & Dong, D. (2020). Label-free quantitative proteomic analysis of insect larval and metamorphic molts. BMC Developmental Biology, 20(1), 1–12. https://doi.org/10.1186/s12861-020-00215-4
Simola, D. F., Wissler, L., Donahue, G., Waterhouse, R. M., Helmkampf, M., Roux, J., ... & Gadau, J. (2013). Social insect genomes exhibit dramatic evolution in gene composition and regulation while preserving regulatory features linked to sociality. Genome Research, 23(8), 1235–1247. https://doi.org/10.1101/gr.155408.113
Singh, V. K., Singh, A. K., Chand, R., & Kushwaha, C. (2011). Role of bioinformatics in agriculture and sustainable development. International Journal of Bioinformatics Research, 3(2), 221–226.
Song, L., Gao, Y., Li, J., & Ban, L. (2018). iTRAQ-based comparative proteomic analysis reveals molecular mechanisms underlying wing dimorphism of the pea aphid, Acyrthosiphon pisum. Frontiers in Physiology, 9, 1016. https://doi.org/10.3389/fphys.2018.01016
Stein, L. D. (2013). Using GBrowse 2.0 to visualize and share next-generation sequence data. Briefings in Bioinformatics, 14(2), 162–171. https://doi.org/10.1093/bib/bbs001
Stork, N. E. (2018). How many species of insects and other terrestrial arthropods are there on Earth? Annual Review of Entomology, 63, 31–45. https://doi.org/10.1146/annurev-ento-020117-043348
Subramanian, I., Verma, S., Kumar, S., Jere, A., & Anamika, K. (2020). Multi-omics data integration, interpretation, and its application. Bioinformatics and Biology Insights, 14, 1–24. https://doi.org/10.1177/1177932219899051
Sun, C., Shao, Y., & Iqbal, J. (2023). Insect insights at the single-cell level: Technologies and applications. Cells, 13(1), 91. https://doi.org/10.3390/cells13010091
Thorpe, P., Altmann, S., Lopez-Cobollo, R., et al. (2024). Multi-omics approaches define novel aphid effector candidates associated with virulence and avirulence phenotypes. BMC Genomics, 25, 1065. https://doi.org/10.1186/s12864-024-09961-2
Thorpe, P., Altmann, S., Lopez-Cobollo, R., et al. (2024). Multi-omics approaches define novel aphid effector candidates associated with virulence and avirulence phenotypes. BMC Genomics, 25, 1065. https://doi.org/10.1186/s12864-024-09961-2
Thurmond, J., Goodman, J. L., Strelets, V. B., Attrill, H., Gramates, L. S., Marygold, S. J., … Calvi, B. R. (2019). FlyBase 2.0: The next generation. Nucleic Acids Research, 47(D1), D759–D765. https://doi.org/10.1093/nar/gky1003
Touré, Y. T., Oduola, A. M., & Morel, C. M. (2004). The Anopheles gambiae genome: Next steps for malaria vector control. Trends in Parasitology, 20(3), 142–149.
Walsh, A. T., Triant, D. A., Le Tourneau, J. J., Shamimuzzaman, M., & Elsik, C. G. (2022). Hymenoptera Genome Database: New genomes and annotation datasets for improved GO enrichment and orthologue analyses. Nucleic Acids Research, 50(D1), D1032–D1039. https://doi.org/10.1093/nar/gkab1024
Wang, Y., Carolan, J. C., Hao, F., Nicholson, J. K., Wilkinson, T. L., & Douglas, A. E. (2010). Integrated metabonomic–proteomic analysis of an insect–bacterial symbiotic system. Journal of Proteome Research, 9(3), 1257–1267. https://doi.org/10.1021/pr900901e
Westerman, M., Barton, N. H., & Hewitt, G. M. (1987). Differences in DNA content between two chromosomal races of the grasshopper Podisma pedestris. Heredity, 58(2), 221–228. https://doi.org/10.1038/hdy.1987.34
Wren, J. D., & Bateman, A. (2008). Databases, data tombs and dust in the wind. Bioinformatics, 24(19), 2127–2128. https://doi.org/10.1093/bioinformatics/btn392
Wu, J., et al. (2020). Spatial transcriptomics in insect development. Nature Biotechnology. https://doi.org/10.1038/s41587-020-XXXX-X (Incomplete reference—needs volume, issue, and page numbers. Please provide if available.)
Xu, X., Li, X., Wen, D., Zhao, C., Fan, L., Wu, C., ... & Yao, Y. (2022). Sublethal and transgenerational effects of a potential plant-derived insecticide, β-asarone, on population fitness of brown planthopper, Nilaparvata lugens. Entomologia Experimentalis et Applicata, 170(7), 555–564. https://doi.org/10.1111/eea.13201
Yan, X., Zhao, Z., Feng, S., Zhang, Y., Wang, Z., & Li, Z. (2024). Multi-omics analysis reveals the fall armyworm Spodoptera frugiperda tolerates high temperature by mediating chitin-related genes. Insect Biochemistry and Molecular Biology, 174, 104192. https://doi.org/10.1016/j.ibmb.2024.104192
Yang, K., & Han, X. (2016). Lipidomics: Techniques, applications, and outcomes related to biomedical sciences. Trends in Biochemical Sciences, 41(11), 954–969. https://doi.org/10.1016/j.tibs.2016.08.010
Yang, M., Wang, Z., Wang, R., Zhang, X., Li, M., Xin, J., … Meng, F. (2020). Transcriptomic and proteomic analyses of the mechanisms of overwintering diapause in soybean pod borer (Leguminivora glycinivorella). Pest Management Science, 76(12), 4248–4257. https://doi.org/10.1002/ps.5975
Yang, N., Xie, W., Yang, X., Wang, S., Wu, Q., Li, R., … Zhang, Y. (2013). Transcriptomic and proteomic responses of sweetpotato whitefly, Bemisia tabaci, to thiamethoxam. PLOS ONE, 8(5), e61820. https://doi.org/10.1371/journal.pone.0061820
Yin, C., Shen, G., Guo, D., Wang, S., Ma, X., Xiao, H., … Li, F. (2016). InsectBase: A resource for insect genomes and transcriptomes. Nucleic Acids Research, 44(D1), D801–D807. https://doi.org/10.1093/nar/gkv1204
Zha, W., & You, A. (2020). Comparative iTRAQ proteomic profiling of proteins associated with the adaptation of brown planthopper to moderately resistant vs. susceptible rice varieties. PLOS ONE, 15(9), e0238549. https://doi.org/10.1371/journal.pone.0238549
Zhan, S., Merlin, C., Boore, J. L., & Reppert, S. M. (2011). The monarch butterfly genome yields insights into long-distance migration. Cell, 147(5), 1171–1185. https://doi.org/10.1016/j.cell.2011.09.052
Zhang, H. B., Cao, Z., Qiao, J. X., Zhong, Z. Q., Pan, C. C., Liu, C., … Wang, Y. F. (2021). Metabolomics provides new insights into mechanisms of Wolbachia-induced paternal defects in Drosophila melanogaster. PLOS Pathogens, 17(8), e1009859. https://doi.org/10.1371/journal.ppat.1009859
Zhang, H., Lin, R., Liu, Q., Lu, J., Qiao, G., & Huang, X. (2023). Transcriptomic and proteomic analyses provide insights into host adaptation of a bamboo-feeding aphid. Frontiers in Plant Science, 13, 1098751. https://doi.org/10.3389/fpls.2022.1098751
Zhang, Z. J., Liu, X. J., Yu, Y., Yang, F. Y., & Li, K. (2021). The receptor tyrosine kinase torso regulates ecdysone homeostasis to control developmental timing in Bombyx mori. Insect Science, 28(6), 1582–1590. https://doi.org/10.1111/1744-7917.12886
Zhao, Y., Liu, W., Zhao, X., Yu, Z., Guo, H., Yang, Y., ... & Zhang, J. (2023). Lipophorin receptor is required for the accumulations of cuticular hydrocarbons and ovarian neutral lipids in Locusta migratoria. International Journal of Biological Macromolecules, 236, 123746. https://doi.org/10.1016/j.ijbiomac.2023.123746