Host plant resistance (HPR) is an inheritable trait that assists the plant to obstruct the growth of insect population or to recover from damage caused by populations that were not subdued to grow. There are three components of plant resistance, viz, antixenosis, antibiosis, and tolerance together called as genetic resistance. Significant progress has been made in different crop in identification and development of varieties with resistance to the major pests. HPR is an effective, economical, and environment friendly method of pest management, which further compatible with other management strategies. The most advantage of this technique is that farmers almost do not need any skill or expertise in its application and also applied without any investment of cash. HPR not only cause a major reduction in pesticide use and reduction in development of resistance against insecticides in target populations, but also lead to increased activity of natural enemies and reduction in pesticide residues in food and processed products. Along with the plant growth-promoting properties, beneficial microbes can increase plant health and stimulate resistance to insect by inducing systemic defence. In the present era of organic farming, induced resistance can be exploited for developing crop cultivars, and there by act as one of components of integrated pest management for sustainable crop production.
HPR, IPM, Antixenosis, Antibiosis, Tolerance, Induced resistance
Ahman, I. (2006). Breeding for inducible resistance against insects–applied plant breeding aspects. In Abstracts of the IOBC Meeting, Breeding for inducible resistance against pests and diseases, Heraklio, Crete.
Ananthakrishnan, T. N. (2001). Insect and plant defence dynamics. Oxford and JPG Publishing Co. PVT, LTD.
Anitha, S., & Karthika, N. (2018). Antixenosis resistance in okra accessions against shoot and fruit borer Earias vittella (Fab.). Journal of Phytology, 10, 27–32.
Arimura, G., Kost, C., & Boland, W. (2005). Herbivore-induced, indirect plant defences. Biochimica et Biophysica Acta (BBA), 1734, 91–111.
Assis, F. A. E., Jair, C. M., Luis, C. P. S., Jonas, F., Amanda, M. N., & Cristiana, S. A. (2012). Inducers of resistance in potato and its effects on defoliators and predatory insects. Revista Colombiana de Entomología, 38, 30–34.
Bisht, K., Yadav, S. K., Bhowmik, S., & Singh, N. N. (2022). Morphological and biochemical resistance to Helicoverpa armigera (Lepidoptera: Noctuidae) in tomato. Crop Protection, 162.
Calatayud, P., Njuguna, E., & Juma, G. (2016). Silica in insect-plant interactions. Entomology, Ornithology & Herpetology: Current Research, 5(4), e125. https://doi.org/10.4172/2161-0983.1000e125
Chatterjee, P., Mondal, S., & Das, A. (2019). Screening of different genotypes of okra (Abelmoschus esculentus L.) against leafhopper (Amrasca biguttula biguttula I.) and whitefly (Bemisia tabaci G.) under new gangetic alluvial zone of West Bengal. International Journal of Current Microbiology and Applied Sciences, 8(3), 1087–1095.
Chavan, S. M., & Patel, K. G. (2018). Biochemical basis of resistance in rice varieties against yellow stem borer, Scirpophaga incertulas (walker). Indian Journal of Entomology, 80(3), 1074–1079.
Chavan, S. M., & Patel, K. G. (2018). Morphological basis of resistance in rice against yellow stem borer, Scirpophaga incertulas (walker). Indian Journal of Entomology, 80(1), 27–35.
Dabhi, M. V. (2008). Succession, population dynamics and management of major insect pests of okra, [Abelmoschus esculentus (L.) Moench] [Doctoral dissertation, Anand Agricultural University].
Das, P., & Dutta, S. K. (2000). Relationship of total N and phenol content of green gram leaf with infestation and fecundity of Aphis craccivora Koch and Nacoleia vulgalis Guen. Insect Environment, 5(4), 163–164.
Das, P., & Dutta, S. K. (2001). Relationship of infestation and fecundity of Nacoleia vulgalis Guen and Aphis craccivora Koch with phosphorus and potassium contents of green gram. Crop Research, 22(1), 43–48.
Dhaliwal, G. S., & Dilwari, V. K. (1993). Host plant resistance to insects. Kalyani Publishers.
Dose Janhavi, G., Satpute, N. S., Bhalkare, S. K., Lande, S. S., & Thakre, B. A. (2023). Evaluation of Biophysical and Biochemical Parameters of Okra Genotypes for Resistance against jassid, Amrasca biguttula biguttula (Ishida). Biological Forum – An International Journal, 15(10), 1607–1614.
Doshi, K. M. (2004). Influence of biochemical factors on the incidence of shoot and fruit borer infestation in eggplant. Capsicum and Eggplant Newsletter, 23, 145–148.
Doss, R. P., Oliver, J. E., Proebsting, W. M., Potter, S. W., Kuy, S. R., & Clement, S. L. (2000). Bruchins: Insect derived plant regulators that stimulate neoplasm formation. Proceedings of the National Academy of Sciences of the United States of America, 97, 6218–6223. https://doi.org/10.1073/pnas.110054697
Engelberth, K. (2000). Differential signaling and plant-volatile biosynthesis. Biochemical Society Transactions, 28, 871–872.
Fernando, E. (2009). Studies on host plant resistance against sugarcane woolly aphid, Ceratovacuna lanigera (Zehnter) (Homoptera: Aphididae) [Doctoral dissertation, University of Agricultural Sciences, Dharwad].
Fujii, K., Ishimoto, M., & Kitamura, K. (1989). Patterns of resistance to bean weevils (Bruchidae) in Vigna radiata-mungo sublobata complex inform the breeding of new resistant variety. Applied Entomology and Zoology, 24, 126–132.
Georgina, K., Mulwa, O. M., Kitonyo, O. M., & Nderitu, J. H. (2023). Earliness and Crop Morphological Traits Modulate Field Pest Infestation in Green Gram. Journal of Economic Entomology, 116(2), 462–471.
Ghoghari, P. D. (2008). Studies on biology, chemical control and host plant resistance of sorghum shootfly, Antherigona soccata Rondani [Doctoral dissertation, Navsari Agricultural University].
Halder, J., & Srinivasan, S. (2011). Varietal screening and role of morphological factors on distribution and abundance of spotted pod borer, Maruca vitrata (Fabricius) on Cowpea. Annals of Plant Protection Sciences, 19, 71–74.
Halder, J., Sanwal, S. K., Deb, D., Rai, A. B., & Singh, B. (2016). Mechanisms of physical and biochemical basis of resistance against leaf-hopper (Amrasca biguttula biguttula) in different okra (Abelmoschus esculentus) genotypes. Indian Journal of Agricultural Sciences, 86(4), 481–484.
Halder, J., Sanwal, S. K., Rai, A. K., Rai, A. B., Singh, B., & Singh, B. K. (2015). Role of physico-morphic and biochemical characters of different okra genotypes in relation to population of okra shoot and fruit borer, Earias vittella (Noctuidae: Lepidoptera). Indian Journal of Agricultural Sciences, 85(2), 278–282.
Haldhar, S. M., Choudhary, B. R., Bhargava, R., & Meena, S. R. (2015). Antixenotic and allelochemical resistance traits of watermelon against Bactrocera cucurbitae in a Hot Arid Region of India. Florida Entomologist, 98(3), 827–834.
Harrison, M. J. (2005). Signaling in the arbuscular mycorrhizal symbiosis. Annual Review of Microbiology, 59, 19–42. https://doi.org/10.1146/annurev.micro.58.030603.123749
Heng-Moss, T. M., Macedo, X., Ni, J., Markwell, J. P., Baxendale, F. P., Quisenberry, S. S., & Tolmay, V. (2003). Comparison of chlorophyll and carotenoid concentrations among Russian wheat aphid (Homoptera: Aphididae) infested wheat isolines. Journal of Economic Entomology, 96(2), 475–48
Hossain, M. T., Khan, A., Chung, E. J., Rashid, M. H., & Chung, Y. R. (2016). Biological control of rice bakanae by an endophytic Bacillus oryzicola YC7007. Plant Pathology Journal, 32, 228–242. https://doi.org/10.5423/PPJ.OA.10.2015.0218
Hunsigi, G., Yekkeli, N. R., Perumal, L., & Thipannavar, P. S. (2006). Antibiosis in sugarcane genotype against woolly aphid Ceratovacuna lanigera Zehntner. Current Science, 90(6), 771–772.
Ibanez, S., Gallet, C., & Després, L. (2012). Plant insecticidal toxins in ecological networks. Toxins, 4, 228–243. https://doi.org/10.3390/toxins4040228
Javed, H., Ata-Ul-Mohsin, Aslam, M., Naeem, M., Amjad, M., & Mahmood, T. (2011). Relationship between morphological characters of different aubergine cultivars and fruit infestation by Leucinodes Orbonalis Guenee. Pakistan Journal of Botany, 43(4), 2023–2028.
Javvaji, S., Uma, M. T., Ramana, D. B. V., & Sheshu, M. M. (2021). Characterization of resistance to rice leaf folder, Cnaphalocrocis medinalis in mutant Samba Mahsuri rice lines. Entomologia Experimentalis et Applicata, 169. https://doi.org/10.1111/eea.13082
Johnson, T. E. Y. S. (2001). Mechanisms of resistance in wild rice (Oryza spp.) to yellow stem borer Scirpophaga incertulas (Walker) (Pyralidae: Lepidoptera) [Unpublished master's thesis]. Tamil Nadu Agricultural University.
Karban, R. (2011). The ecology and evolution of induced resistance against herbivores. Functional Ecology, 25, 339–347.
Khanam, U. K. S., Hossain, I., & Ahmed, N. (2003). Varietal screening of tomato-to-tomato fruit borer, Helicoverpa armigera (Hub.) and associated tomato plant characters. Pakistan Journal of Biological Sciences, 6(4), 413–421.
Khorsheduzzaman, A. K. M., Alam, M. Z., Rahman, M. M., Khaleque Mian, M. A., & Hossain Mian, M. I. (2010). Biochemical basis of resistance in eggplant (Solanum melongena L.) to Leucinodes orbonalis Guenee and their correlation with shoot and fruit infestation. Bangladesh Journal of Agricultural Research, 35(1), 149–155.
Kogan, M., & Ortman, E. F. (1978). Antixenosis—a new term proposed to define Painter’s “nonpreference” modality of resistance. Bulletin of the Entomological Society of America, 24, 175–176.
Kumar, Y. H. D., & Padhi, J. (2022). Biophysical basis of resistance in okra to jassids, Amrasca biguttula biguttula (Ishida). Indian Journal of Entomology, 1–6.
Kvedaras, O. L., An, M., Choi, Y. S., & Gurr, G. M. (2010). Silicon enhances natural enemy attraction and biological control through induced plant defences. Bulletin of Entomological Research, 100, 367–371.
Lingappa, S., Kulkarni, K. A., Patil, R. K., Tippannavar, P. S., & Shekharappa. (2003). Status of woolly aphid, Ceratovacuna lanigera Zehntner on sugarcane in Karnataka. In The brain storming session on sugarcane woolly aphid. MPKV, Rahuri.
Liu, J., Zhu, J., Zhang, P., Han, L., Reynolds, O. L., Zeng, R., Wu, J., Shao, Y., You, M., & Gurr, G. M. (2017). Silicon supplementation alters the composition of herbivore induced plant volatiles and enhances attraction of parasitoids to infested rice plants. Frontiers in Plant Science, 8, 1265.
Majumder, P., Mondal, H. A., & Das, S. (2005). Insecticidal activity of Arum maculatum tuber lectin and its binding to the glycosylated insect gut receptors. Journal of Agricultural and Food Chemistry, 53, 6725–6729. https://doi.org/10.1021/jf051155z
Martin, S. (2004). Biochemical and molecular profiling of diversity in Solanum spp. and its impact on pests [Master's thesis]. Tamil Nadu Agricultural University.
Massey, F. P., Ennos, A. R., & Hartley, S. E. (2006). Silica in grasses as a defence against insect herbivores: Contrasting effects on folivores and a phloem feeder. Journal of Animal Ecology, 75(2), 595–603. https://doi.org/10.1111/j.1365-2656.2006.01082.
Meyer, J. H., & Keeping, M. G. (2000). Review of research into the role of silicon for sugarcane production. In Proceedings of the 74th Annual Congress of the South African Sugar Technologists’ Association (pp. 29–40). South African Sugar Technologists’ Association.
https://www.cabdirect.org/cabdirect/abstract/20023018356
Mohammad, S. A., Gopalakrishna Naidu, K., Tippannavar, P. S., & Nadaf, H. L. (2019). Biophysical and biochemical mechanism of resistance to Spodoptera litura in groundnut (Arachis hypogaea L.). Journal of Entomology and Zoology Studies, 7(4), 86–96.
Mrosso, S. E., Ndakidemi, P. A., & Mbega, E. R. (2022). Characterization of secondary metabolites responsible for the resistance of local tomato accessions to whitefly (Bemisia tabaci, Gennadius 1889) Hemiptera in Tanzania. Crops, 2, 445–460. https://doi.org/10.3390/crops2040032
Nagar, J., Khinchi, S. K., Kumawat, K. C., & Sharma, A. (2017). Screening different varieties of okra (Abelmoschus esculentus (L.) Moench) against sucking insect pests. Journal of Pharmacognosy and Phytochemistry, 6(3), 30–34.
Nagaraja, M. (2006). Evaluation of pigeonpea and cowpea genotypes for bruchid resistance (Bruchidae) [Master's thesis]. University of Agricultural Sciences, Dharwad.
Nandi, P. S., Roy, S., Bhattacharya, S., Pal, A., & Chakraborty, K. (2020). Biochemical factors associated with mango mealy bug (Drosicha mangiferae G.) infestation in different mango cultivars at Malda, West Bengal (India). Journal of Applied Horticulture, 22(3), 230–239.
Nath, P., Panday, A. K., Kumar, A., Rai, A. B., & Palanivel, H. (2017). Biochemical resistance traits of bitter gourd against fruit fly Bactrocera cucurbitae (Coquillett) infestation. Journal of Agricultural Science, 9(2), 217–225.
Norris, D. M., & Kogan, M. (1980). Biochemical and morphological basis of resistance to insect pests. Nature, 286, 411–412.
Painter, R. H. (1968). Crops that resist insects provide away to increase world food security. Kansas State Agricultural Experiment Station Bulletin.
Painter, R. H. (1951). Insect resistance in crop plants. The Mac. Millan Co.
Panda, N., & Heinrich, E. A. (1983). Levels of tolerance and antibiosis in rice varieties having moderate resistance to the brown plant hopper, Nilaparavata lugens (Stal) (Hemiptera:Delphacidae). Environmental Entomology, 12, 1204–1214.
Panda, N., & Kush, G. S. (1995). Host plant resistance to insects. CAB International.
Pappas, M. L., Broekgaarden, C., Broufas, G. D., Kant, M. R., Messelink, G. J., Steppuhn, A., Wäckers, F., & van Dam, N. M. (2017). Induced plant defences in biological control of arthropod pests: A double-edged sword. Pest Management Science, 73, 1780–1788.
Petzold-Maxwell, J., Wong, S., Arellano, C., & Gould, F. (2011). Host plant direct defense against eggs of its specialist herbivore, Heliothis subflexa. Ecological Entomology, 36, 700–708. https://doi.org/10.1111/j.1365-2311.2011.01315.x
Prameela, V., Rao, C. N., Rachaputi, Y., Sultanbawa, L., Phan, A. D. T., Robert, J. H., & Hugh, B. (2021). Biochemical basis of resistance to pod borer (Helicoverpa armigera) in Australian wild relatives of pigeonpea. Legume Science, 3, e101. https://doi.org/10.1002/leg3.101
Praneetha, S., Rajashree, V., & Pugalendhi, L. (2011). Association of characters on yield and shoot and fruit borer resistance in brinjal (Solanum melongena L.). Electronic Journal of Plant Breeding, 2(4), 574–577.
Rahardjo, B. T., Achadian, E. M., Taufiqurrahman, A. F., & Hidayat, M. R. (2021). Silica fertilizer (Si) enhances sugarcane resistance to the sugarcane top borer Scirpophaga excerptalis Walker. AGRIVITA Journal of Agricultural Science, 43(1), 37–42. https://doi.org/10.17503/agrivita.v1i1.2654
Rashid, M. H., & Chung, Y. R. (2017). Induction of systemic resistance against insect herbivores in plants by beneficial soil microbes. Frontiers in Plant Science, 8, 275.
Renwick, A. A., & Chew, F. S. (1994). Oviposition behaviour in Lepidoptera. Annual Review of Entomology, 39, 377–400.
Rizvana Banu, M., Mutjiah, A. R., & Ashok, S. (2007). Host plant resistance mechanism to pod borer, Helocoverpa armigera in pigeonpea. Asian Journal of Plant Sciences, 6(1), 193–194.
Sadasivam, S., & Thayumanavan, B. (2003). Molecular host plant resistance to pests. Marcel Dekker, Inc.
Sandhi, R. K., Sidhu, S. K., Sharma, A., Chawla, N., & Pathak, M. (2017). Morphological and biochemical basis of resistance in okra to cotton jassid, Amrasca biguttula biguttula (Ishida). Phytoparasitica, 45(3), 381–394.
Saraswathi, J. M., Muthukumaran, N., & Ramanan, M. (2022). Bio physical basis of resistance to tobacco caterpillar Spodoptera litura (Fab.) in castor. International Journal of Current Microbiology and Applied Sciences, 11(01), 335–339.
Shaheen, F. A., Khaliq, A., & Aslam, M. (2006). Resistance of chickpea (Cicer arietinum L.) cultivars against pulse beetle. Pakistan Journal of Botany, 38(4), 1237–1244.
Shahjahan, M., & Hossain, M. (2003). Identification of morphological characters influencing the infestation rate of yellow stem borer. Pakistan Journal of Scientific and Industrial Research, 46(1), 33–42.
Sison, M. L. J., Cortaga, C. Q., Barcos, A. K. S., Laure, N. R., Mateo, J. M. C., & dela Cueva, F. M. (2020). Resistance screening and influence of fruit physico-biochemical properties of “Carabao” and other mango varieties against Oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae), in the Philippines. Philippine Journal of Science, 149(4), 1175–1187.
Smith, C. M. (2005). Plant resistance to arthropods molecular and conventional approaches. Springer.
Soujanya Lakshmi, P., Sekhar, J. C., Karjagi, C. G., Ratnavathi, C. V., Venkateswarlu, R., Yathish, K. R., Suby, S. B., Sunil, N., & Rakshit, S. (2023). Role of morphological traits and cell wall components in imparting resistance to pink stem borer, Sesamia inferens Walker in maize. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1167248
Sridhar, Y., & Siddiqui, K. H. (2001). Morphological basis of resistance to whitefly, Bemisia tabaci Genn. in soybean. Shashpa, 8(2), 167–174.
Stoger, E., Williams, S., Christou, P., Down, R. E., & Gatehouse, J. A. (1999). Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid Sitobion avenae. Molecular Breeding, 5, 65–73.
https://doi.org/10.1023/A:1009616413886
Sunitha, V., Ranga Rao, G. V., Vijaya Lakshmi, K., Saxena, K. B., Rameshwar Rao, V., & Reddy, Y. V. R. (2008). Morphological and biochemical factors associated with resistance to Maruca vitrata in short duration pigeonpea. International Journal of Tropical Insect Science, 28, 45–52.
Sushil, S. N., Chandra, A., Roy, S., & Pathak, A. D. (2019). Determination of morphological and biochemical basis of resistance against top borer, Scirpophaga excerptalis Walker in sugarcane. Sugar Tech, 22(3). https://doi.org/10.1007/s12355-019-00767-0
Tubana, B. S., Babu, T., & Datnoff, L. E. (2016). A review of silicon in soils and plants and its role in us agriculture: History and future perspectives. Soil Science, 181(9–10), 393–411.
Tyagi, S., Ram Keval, Verma, S., & Kohar, D. N. (2022). Morphological and biochemical basis of resistance to pod borer Helicoverpa armigera in pigeonpea. Indian Journal of Entomology, 84(3), 704–708.
Vaja, A. S., Thumar, R. K., & Patel, S. D. (2023). Role of different morphological characters of okra genotypes against insect pest’s complex. Mysore Journal of Agricultural Sciences, 57(3), 411–419.
Vandenborre, G., Miersch, O., Hause, B., Smagghe, G., Wasternack, C., & Van Damme, E. J. M. (2011). Spodoptera littoralis induced lectin expression in tobacco. Plant Cell Physiology, 50, 1142–1155.
Vandenborre, G., Smagghe, G., & Van Damme, E. J. M. (2009). Plant lectins as defense proteins against phytophagous insects. Phytochemistry, 72, 1538–1550. https://doi.org/10.1016/j.phytochem.2011.02.024
War, A. R., Murugesan, S., Boddepalli, V. N., Srinivasan, R., & Nair, R. M. (2017). Mechanism of resistance in mungbean, Vigna radiata (L.) R. Wilczek var. radiata to bruchids, Callosobruchus spp. (Coleoptera: Bruchidae). Frontiers in Plant Science, 8, 1031. https://doi.org/10.3389/fpls.2017.01031
War, A. R., Paulraj, M. G., Ahmad, T., Buhroo, A. A., Hussain, B., Ignacimuthu, S., & Sharma, H. C. (2012). Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior, 7, 1306–1320.
War, A. R., Taggar, G. K., Hussain, B., Taggar, M. S., Nair, R. M., & Sharma, H. C. (2018). Plant defence against herbivory and insect adaptations. AoB Plants, 10. https://doi.org/10.1093/aobpla/ply037
Youm, O., & Kumar, K. A. (1995). Screening and breeding for resistance to millet head miner. In K. F. Nwanze & O. Youm (Eds.), Panicle insect pests of sorghum and pearlmillet (pp. 201–209). International Crops Research Institute for the Semi-Arid Tropics.
Zhao, L. Y., Chen, J. L., Cheng, D. F., Sun, J. R., Liu, Y., & Tian, Z. (2009). Biochemical and molecular characterizations of Sitobion avenae-induced wheat defense responses. Crop Protection, 28, 435–442.