Harmony in Agriculture - Harnessing Green Technologies for Eco-friendly Insect Pest Management | Doi : 10.37446/edibook082025/22-32

PAID ACCESS | Published on : 02-Apr-2025

RNAi Technology for Insect Pest Management

  • Nitika Saini
  • Department of Entomology, Punjab Agricultural University, Ludhiana, Punjab, India.
  • Athul Jacob
  • Department of Entomology, Punjab Agricultural University, Ludhiana, Punjab, India.
  • Harshdeep Singh
  • Department of Entomology, Punjab Agricultural University, Ludhiana, Punjab, India.

Abstract

Global population growth increases the demand for food, but insect pests damage about 18% of crop production. The rise of pesticide-resistant insect populations has reduced the effectiveness of synthetic chemicals, prompting a reliance on Integrated Pest Management (IPM) programs. To address these challenges, safer, species-specific pest control methods are needed. RNA interference (RNAi) offers a promising solution by selectively suppressing genes crucial for pest growth, development, or reproduction. RNAi's sequence-specific approach can target pest insects without affecting non-target species, providing a low-risk alternative to traditional chemical pesticides. However, many insect species, including key lepidopteran and hemipteran pests, show limited responses to RNAi, highlighting biological barriers that currently constrain the effectiveness of RNAi in agricultural pest management.

Keywords

RNA interference, Pest management, Novel method

References

  • Baum, J. A., Bogaert, T., Clinton, W., Heck, G. R., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikwa, T., Pleau, M., & Vaughn, T. (2007). Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 25(11), 1322–1326.

    Castellanos, N. L., Smagghe, G., Sharma, R., Oliveira, E. E., & Christiaens, O. (2019). Liposome encapsulation and EDTA formulation of dsRNA targeting essential genes increase oral RNAi-caused mortality in the Neotropical stink bug Euschistus heros. Pest Management Science, 75(2), 537–548.

    Cho, C., Jang, J., Kan, G., Watanabe, H., Uchihashi, T., Kim, S. J., Kato, K., Lee, J. Y., & Song, J. J. (2019). Structural basis of nucleosome assembly by the Abo1 AAA+ ATPase histone chaperone. Nature Communications, 10(1), 5764.

    Clemens, J. C., Worby, C. A., Simonson-Leff, N., Muda, M., Maehama, T., Hemmings, B. A., & Dixon, J. E. (2000). Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proceedings of the National Academy of Sciences USA, 97(12), 6499–6503.

    Cooper, A. M., Silver, K., Zhang, J., Park, Y., & Zhu, K. Y. (2019). Molecular mechanisms influencing efficiency of RNA interference in insects. Pest Management Science, 75(1), 18–28.

    Cullen, B. R. (2014). Viruses and RNA interference: Issues and controversies. Journal of Virology, 88(22), 12934–12936.

    Feinberg, E. H., & Hunter, C. P. (2003). Transport of dsRNA into cells by the transmembrane protein SID-1. Science, 301(5639), 1545–1547.

    Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669), 806–811.

    Garbatti Factor, B., de Moura Manoel Bento, F., & Figueira, A. (2022). Methods for delivery of dsRNAs for agricultural pest control: The case of lepidopteran pests. Methods in Molecular Biology, 2360, 317–345.

    Gillet, F. X., Garcia, R. A., Macedo, L. L., Albuquerque, E. V., Silva, M. C., & Grossi-de-Sa, M. F. (2017). Investigating engineered ribonucleoprotein particles to improve oral RNAi delivery in crop insect pests. Frontiers in Physiology, 8, 256.

    Gong, L., Chen, Y., Hu, Z., & Hu, M. (2011). Testing insecticidal activity of novel chemically synthesized siRNA against Plutella xylostella under laboratory and field conditions. PLoS ONE, 8(11), e62990.

    Hoang, B. T., Fletcher, S. J., Brosnan, C. A., Ghodke, A. B., Manzie, N., & Mitter, N. (2023). RNAi as a foliar spray: Efficiency and challenges to field applications. International Journal of Molecular Sciences, 23(12), 6639.

    Kolliopoulou, A., Taning, C. N. T., Smagghe, G., & Swevers, L. (2017). Viral delivery of dsRNA for control of insect agricultural pests and vectors of human disease: Prospects and challenges. Frontiers in Physiology, 8, 399.

    Li, H., Guan, R., Guo, H., & Miao, X. (2015). New insights into an RNAi approach for plant defense against piercing-sucking and stem-borer insect pests. Plant Cell & Environment, 38(11), 2277–2285.

    Lu, Y., Deng, X., Zhu, Q., Wu, D., Zhong, J., Wen, L., & Yu, X. (2023). The dsRNA delivery, targeting, and application in pest control. Agronomy, 13(3), 714.

    Lucas, K. J., Zhao, B., Roy, S., Gervaise, A. L., & Raikhel, A. S. (2015). Mosquito-specific microRNA-1890 targets the juvenile hormone-regulated serine protease JHA15 in the female mosquito gut. RNA Biology, 12(12), 1383–1390.

    Majidiani, S., PourAbad, R. F., Laudani, F., Campolo, O., Zappalà, L., Rahmani, S., Mohammadi, S. A., & Palmeri, V. (2019). RNAi in Tuta absoluta management: Effects of injection and root delivery of dsRNAs. Journal of Pest Science, 92(4), 1409–1419.

    Malone, C. D., Brennecke, J., Dus, M., Stark, A., McCombie, W. R., Sachidanandam, R., & Hannon, G. J. (2009). Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell, 137(3), 522–535.

    Marques, J. T., Kim, K., Wu, P. H., Alleyne, T. M., Jafari, N., & Carthew, R. W. (2010). Loqs and R2D2 act sequentially in the siRNA pathway in Drosophila. Nature Structural & Molecular Biology, 17(1), 24–30.

    Matranga, C., Tomari, Y., Shin, C., Bartel, D. P., & Zamore, P. D. (2007). Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell, 123(4), 607–620.

    Mitter, N., Worrall, E. A., Robinson, K. E., Li, P., Jain, R. G., Taochy, C., Fletcher, S. J., Carroll, B. J., Lu, G. Q., & Xu, Z. P. (2017). Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nature Plants, 3, 16207.

    Napoli, C., Lemieux, C., & Jorgensen, R. (1990). Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell, 2(4), 279–289.

    Obbard, D. J., Gordon, K. H., Buck, A. H., & Jiggins, F. M. (2008). The evolution of RNAi as a defense against viruses and transposable elements. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1513), 99–115.

    Olivieri, D., Senti, K. A., Subramanian, S., Sachidanandam, R., & Brennecke, J. (2012). The cochaperone shutdown defines a group of biogenesis factors essential for all piRNA populations in Drosophila. Molecular Cell, 47(6), 954–969.

    Pak, J., & Fire, A. (2007). Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science, 315(5809), 241–244.

    Saleh, M. C., van Rij, R. P., Hekele, A., Gillis, A., Foley, E., O'Farrell, P. H., & Andino, R. (2006). The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nature Cell Biology, 8(8), 793–802.

    Silver, K., Cooper, A. M., & Zhu, K. Y. (2021). Strategies for enhancing the efficiency of RNA interference in insects. Pest Management Science, 77(6), 2645–2658.

    Siomi, M. C., Sato, K., Pezic, D., & Aravin, A. A. (2011). PIWI-interacting small RNAs: The vanguard of genome defense. Nature Reviews Molecular Cell Biology, 12(4), 246–258.

    Taning, C. N. T., Christiaens, O., Li, X., Swevers, L., Casteels, H., Maes, M., & Smagghe, G. (2018). Engineered flock house virus for targeted gene suppression through RNAi in fruit flies (Drosophila melanogaster) in vitro and in vivo. Frontiers in Physiology, 9, 805.

    Terenius, O., Papanicolaou, A., Garbutt, J. S., Eleftherianos, I., Huvenne, H., Kanginakudru, S., Albrechtsen, M., An, C., Aymeric, J. L., Barthel, A., & Bebas, P. (2011). RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design. Journal of Insect Physiology, 57(3), 231–245.

    Vogel, E., Santos, D., Mingels, L., Verdonckt, T. W., & Broeck, J. V. (2019). RNA interference in insects: Protecting beneficials and controlling pests. Frontiers in Physiology, 9, 1912.

    Whitten, M. M., Facey, P. D., Del Sol, R., Fernández-Martínez, L. T., Evans, M. C., Mitchell, J. J., Bodger, O. G., & Dyson, P. J. (2016). Symbiont-mediated RNA interference in insects. Proceedings of the Royal Society B: Biological Sciences, 283(1825), 20160042.

    Winston, W. M., Molodowitch, C., & Hunter, C. P. (2002). Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science, 295(5564), 2456–2459.

    Winston, W. M., Sutherlin, M., Wright, A. J., Feinberg, E. H., & Hunter, C. P. (2007). Caenorhabditis elegans SID-2 is required for environmental RNA interference. Proceedings of the National Academy of Sciences USA, 104(26), 10565–10570.

    Wise, J. C., Wise, A. G., Rakotondravelo, M., Vandervoort, C., Seeve, C., & Fabbri, B. (2022). Trunk injection delivery of dsRNA for RNAi-based pest control in apple trees. Pest Management Science, 78(8), 3528–3533.

    Wu, M., Zhang, Q., Dong, Y., Wang, Z., Zhan, W., Ke, Z., Li, S., He, L., Ruf, S., Bock, R., & Zhang, J. (2023). Transplastomic tomatoes expressing double-stranded RNA against a conserved gene are efficiently protected from multiple spider mites. New Phytologist, 237(4), 1363–1373.

    Yan, S., Ren, B., Zeng, B., & Shen, J. (2021). Improving RNAi efficiency for pest control in crop species. BioTech, 68(5), 283–290.

    Yoon, J. S., Gurusamy, D., & Palli, S. R. (2018). Accumulation of dsRNA in endosomes contributes to inefficient RNA interference in the fall armyworm, Spodoptera frugiperda. Insect Biochemistry and Molecular Biology, 90, 53–60.

    Zhang, H., Li, H., Guan, R., & Miao, X. (2015). Lepidopteran insect species-specific, broad-spectrum, and systemic RNA interference by spraying dsRNA on larvae. Entomologia Experimentalis et Applicata, 155(3), 218–228.

    Zhang, J., Khan, S. A., Heckel, D. G., & Bock, R. (2017). Next-generation insect-resistant plants: RNAi-mediated crop protection. Trends in Biotechnology, 35(10), 871–882.

    Zhu, K. Y., & Palli, S. R. (2020). Mechanisms, applications, and challenges of insect RNA interference. Annual Review of Entomology, 65, 293–311.