Coronary artery disease (CAD) remains a leading health concern worldwide. It has become an absolute necessity to keep improving how we prevent, diagnose, and treat it. Despite significant advancements in treatment procedures, the rapid growth in CAD mortality persists. This chapter looks at how the understanding of CAD has changed over time and explores how precision medicine can help us create better treatment plans. By highlighting recent advancements, the aim is to understand how research progress can enhance patient outcomes and reduce the global burden of CAD. This chapter highlights emerging strategies aimed at improving CAD management. Novel diagnostic modalities, including advanced imaging techniques and biomarkers, are enhancing early disease detection and risk stratification. Therapeutic innovations, such as novel drug classes and targeted delivery systems, are expanding the treatment armamentarium. Interventional cardiology continues to evolve with minimally invasive procedures and improved stent technologies. Regenerative medicine holds promise for repairing damaged heart tissue, while precision medicine offers the potential for personalized treatment strategies. The convergence of these approaches is transforming CAD and cardiac health care, including artificial intelligence (AI) which is emerging to provide an unprecedented potential to transform healthcare. However, rigorous evaluation and equitable access to these advancements are essential. Overcoming challenges through multidisciplinary collaboration is crucial to optimizing patient outcomes and reducing the global burden of CAD.
Cardiovascular Disease, Biomarkers, Atherosclerosis, Interventional cardiology, Therapeutic innovations, Regenerative medicine, Precision medicine
Ahmad, A., Imran, M., & Ahsan, H. (2023). Biomarkers as biomedical bioindicators: Approaches and techniques for the detection, analysis, and validation of novel biomarkers of diseases. Pharmaceutics, 15(6), 1630. https://doi.org/10.3390/PHARMACEUTICS15061630
Ashley, E. A., & Niebauer, J. (2004). Coronary artery disease. In Bookshelf. Remedica London. https://www.ncbi.nlm.nih.gov/books/NBK2216/
Boyette, L. C., & Manna, B. (2021). Physiology, myocardial oxygen demand. In StatPearls. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK499897/
Centers for Disease Control and Prevention. (2021). Coronary artery disease. https://www.cdc.gov/heartdisease/coronary_ad.htm
Chaulin, A. M. (2021). Cardiac troponins metabolism: From biochemical mechanisms to clinical practice (literature review). International Journal of Molecular Sciences, 22(20), 10928. https://doi.org/10.3390/ijms222010928
Chen, S. F., Loguercio, S., Chen, K. Y., Lee, S. E., Park, J. B., Liu, S., Sadaei, H. J., & Torkamani, A. (2023). Artificial intelligence for risk assessment on primary prevention of coronary artery disease. Current Cardiovascular Risk Reports, 17(12), 215–231. https://doi.org/10.1007/s12170-023-00731-4
Deb, S., Ghosh, K., & Shetty, S. D. (2015). Nanoimaging in cardiovascular diseases: Current state of the art. The Indian Journal of Medical Research, 141(3), 285–298. https://doi.org/10.4103/0971-5916.156557
Gautam, N., Saluja, P., Malkawi, A., Rabbat, M. G., Al-Mallah, M. H., Pontone, G., Zhang, Y., Lee, B. C., & Al’Aref, S. J. (2022). Current and future applications of artificial intelligence in coronary artery disease. Healthcare, 10(2), 232. https://doi.org/10.3390/HEALTHCARE10020232
Gertz, Z. M., & Wilensky, R. L. (2011). Local drug delivery for treatment of coronary and peripheral artery disease. Cardiovascular Therapeutics, 29(6). https://doi.org/10.1111/J.1755-5922.2010.00187.x
Hazarika, L., Sen, S., & Doshi, J. (2021). Molecular docking analysis of arjunolic acid from Terminalia arjuna with a coronary artery disease target APOE4. Bioinformation, 17(11), 949. https://doi.org/10.6026/97320630017949
Hazarika, L., Sen, S., & Doshi, J. (2022). Computational studies and scaffold search for APOE4 as coronary artery disease target by virtual screening. Computational Biology and Bioinformatics, 10(2), 49. https://doi.org/10.11648/j.cbb.20221002.11
Hazarika, L., Sen, S., & Ranjan, S. (2021). Expression of e4 mutant APOE gene in a select South Indian population indicates relation to coronary artery disease. Acta Scientific Medical Sciences, 5(5), 129–136. https://doi.org/10.31080/ASMS.2020.05.0902
Hazarika, L., Sen, S., Zawar, A., & Doshi, J. (2021). Identification of APOE4 modulators, targeted therapeutic candidates in coronary artery disease, using molecular docking studies. Journal of Drug Design and Medicinal Chemistry, 7(2), 27–38. https://doi.org/10.11648/j.jddmc.20210702.11
Iftikhar, S. F., Bishop, M. A., & Hu, P. (2024). Complex coronary artery lesions. In StatPearls. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK539899/
Kandaswamy, E., & Zuo, L. (2018). Recent advances in treatment of coronary artery disease: Role of science and technology. International Journal of Molecular Sciences, 19(2), 424. https://doi.org/10.3390/IJMS19020424
Kang, H. W., Lee, S. J., Ko, I. K., Kengla, C., Yoo, J. J., & Atala, A. (2016). A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nature Biotechnology, 34(3), 312–319. https://doi.org/10.1038/nbt.3413
Kasai-Brunswick, T. H., de Carvalho, A. C. C., & Carvalho, A. B. (2021). Stem cell therapies in cardiac diseases: Current status and future possibilities. World Journal of Stem Cells, 13(9), 1231. https://doi.org/10.4252/WJSC.V13.I9.1231
Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org/10.1016/J.ARABJC.2017.05.011
Khomtchouk, B. B., Tran, D. T., Vand, K. A., Might, M., Gozani, O., & Assimes, T. L. (2020). Cardioinformatics: The nexus of bioinformatics and precision cardiology. Briefings in Bioinformatics, 21(6), 2031–2051. https://doi.org/10.1093/bib/bbz119
Kuruvilla, S., Adenaw, N., Katwal, A. B., Lipinski, M. J., Kramer, C. M., & Salerno, M. (2014). Late gadolinium enhancement on cardiac magnetic resonance predicts adverse cardiovascular outcomes in nonischemic cardiomyopathy: A systematic review and meta-analysis. Circulation: Cardiovascular Imaging, 7(2), 250–257. https://doi.org/10.1161/CIRCIMAGING.113.001144/-/DC1
Lee, E., Ibrahim, E. S. H., Parwani, P., Bhave, N., & Stojanovska, J. (2020). Practical guide to evaluating myocardial disease by cardiac MRI. American Journal of Roentgenology, 214(3), 546–556. https://doi.org/10.2214/AJR.19.22076
Libby, P., & Theroux, P. (2005). Pathophysiology of coronary artery disease. Circulation, 111(25), 3481–3488. https://doi.org/10.1161/CIRCULATIONAHA.105.537878
McPherson, R., & Tybjaerg-Hansen, A. (2016). Genetics of coronary artery disease. Circulation Research, 118(4), 564–578. https://doi.org/10.1161/CIR
Møller, P. L., Rohde, P. D., Dahl, J. N., Rasmussen, L. D., Schmidt, S. E., Nissen, L., McGilligan, V., Bentzon, J. F., Gudbjartsson, D. F., Stefansson, K., Holm, H., Winther, S., Bøttcher, M., & Nyegaard, M. (2023). Combining polygenic and proteomic risk scores with clinical risk factors to improve performance for diagnosing absence of coronary artery disease in patients with de novo chest pain. Circulation: Genomic and Precision Medicine, 16(5), 442–451. https://doi.org/10.1161/CIRCGEN.123.004053/FORMAT/EPUB
Monsanto, M. M., Wang, B. J., Ehrenberg, Z. R., Echeagaray, O., White, K. S., Alvarez, R., Fisher, K., Sengphanith, S., Muliono, A., Gude, N. A., & Sussman, M. A. (2020). Enhancing myocardial repair with Cardio Clusters. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-17742-z
NIH-NHLBI. (2021). Coronary heart disease | NHLBI, NIH. https://www.nhlbi.nih.gov/health-topics/coronary-heart-disease
Patel, A. R., Salerno, M., Kwong, R. Y., Singh, A., Heydari, B., & Kramer, C. M. (2021). Stress cardiac magnetic resonance myocardial perfusion imaging: JACC review topic of the week. Journal of the American College of Cardiology, 78(16), 1655–1668. [https://doi.org/10.1016/J.JACC.2021.08.022/SUPPL_FILE/MMC1.DOCX](https://doi.org/10.1016/J.JACC.2021.08.022/SUPPL_FILE/MMC1.DOCX)
Rao, G. H. (2020). Clinical handbook of coronary artery disease (1/e). Jaypee Brothers Medical Publishers.
Rehman, S., Khan, A., & Rehman, A. (2021). Physiology, coronary circulation. JAMA: The Journal of the American Medical Association, 184(10), 217. https://www.ncbi.nlm.nih.gov/books/NBK482413/
Remedios, C. G. DOS, LIEW, C. C., ALLEN, P. D., WINSLOW, R. L., EYK, J. E. VAN, & DUNN, M. J. (2003). Genomics, proteomics and bioinformatics of human heart failure. Journal of Muscle Research and Cell Motility, 24(4–6), 251. https://doi.org/10.1023/A:1025433721505
Sanchis-Gomar, F., Perez-Quilis, C., Leischik, R., & Lucia, A. (2016). Epidemiology of coronary heart disease and acute coronary syndrome. Annals of Translational Medicine, 4(13), 256. https://doi.org/10.21037/atm.2016.06.33
Scherr, J., Braun, S., Schuster, T., Hartmann, C., Moehlenkamp, S., Wolfarth, B., Pressler, A., & Halle, M. (2011). 72-h kinetics of high-sensitive troponin T and inflammatory markers after marathon. Medicine and Science in Sports and Exercise, 43(10), 1819–1827. https://doi.org/10.1249/MSS.0B013E31821B12EB
Scheuner, M. T. (2003). Genetic evaluation for coronary artery disease. Genetics in Medicine, 5(4), 269–285. https://doi.org/10.1097/01.GIM.0000079364.98247.26
Shahjehan, D. R., & Beenish, S. B. (2021). Coronary artery disease. In StatPearls. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK564304/
Terashvili, M., & Bosnjak, Z. J. (2019). Stem cell therapies in cardiovascular disease. Journal of Cardiothoracic and Vascular Anesthesia, 33(1), 209. https://doi.org/10.1053/J.JVCA.2018.04.048
van Praet, K. M., Kofler, M., Nazari Shafti, T. Z., El Al, A. A., van Kampen, A., Amabile, A., Torregrossa, G., Kempfert, J., Falk, V., Balkhy, H. H., & Jacobs, S. (2021). Minimally invasive coronary revascularisation surgery: A focused review of the available literature. Interventional Cardiology Review, 16. https://doi.org/10.15420/ICR.2021.05