Plants face constant exposure to a variety challenge from microorganisms such as bacteria, fungi, viruses, and nematodes. Crucial to the defence mechanisms of plants are pathogen-related microbial proteins known as PAMPs or MAMPs, which play a vital role in how plants recognize and respond to threats from pathogens, bolstering their immunity. This section delves into the current knowledge on these proteins, their functions in triggering plant immune reactions, and the anticipated future pathways for research and their practical application in sustainable farming. Progress in fields like structural biology, genomics, and synthetic biology offers hope for improving disease resistance in crops, ultimately safeguarding food security amid global adversities and climate crisis.
Microbial proteins, Receptors, PAMPs, Signalling, Plant immunity
Aguirre, J., Rios-Momberg, M., Hewitt, D., & Hansberg, W. (2005). Reactive oxygen species and development in microbial eukaryotes. Trends in Microbiology, 13(3), 111–118.
Alfano, J. R., & Collmer, A. (2004). Type III secretion system effector proteins: Double agents in bacterial disease and plant defense. Annual Review of Phytopathology, 42, 385–414.
Aslam, S. N., Erbs, G., Morrissey, K. L., Newman, M.-A., Chinchilla, D., Boller, T., et al. (2009). MAMPs signatures, synergy, size and charge: influences on perception or mobility and host defense responses. Molecular Plant Pathology, 10(3), 375–387.
Ausubel, F. (2005). Are innate immune signalling pathways in plants and animals conserved? Nature Immunology, 6(10), 973–979.
Bailey, B. A., Dean, J. F. D., & Anderson, J. D. (1990). An ethylene biosynthesis inducing endoxylanase elicits electrolyte leakage and necrosis in Nicotiana tabacum cv xanthi leaves. Plant Physiology, 94(4), 1849–1854.
Bar, M., Sharfman, M., Ron, M., & Avni, A. (2010). BAK1 is required for the attenuation of ethylene-inducing xylanase (Eix)-induced defense responses by the decoy receptor LeEix1. The Plant Journal, 63(5), 791–800.
Boller, T., & Felix, G. (2009). A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 60, 379–406.
Braun, S. G., Meyer, A., Holst, O., Pühler, A., & Niehaus, K. (2005). Characterization of the Xanthomonas campestris pv. campestris lipopolysaccharide substructures essential for elicitation of an oxidative burst in tobacco cells. Molecular Plant-Microbe Interactions, 18(7), 674–681.
Brutus, A., Sicilia, F., Macone, A., Cervone, F., & De Lorenzo, G. (2010). A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proceedings of the National Academy of Sciences, 107(20), 9452–9457.
Chen, K., Wang, Y., Zhang, R., Zhang, H., & Gao, C. (2019). CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology, 70(1), 667–697. https://doi.org/10.1146/annurev-arplant-050718-100049
Chen, S., Songkumarn, P., Liu, J., & Wang, G.-L. (2020). A versatile zero-background T-vector system for gene cloning and functional genomics. Plant Physiology, 182(3), 1294–1305. https://doi.org/10.1104/pp.19.01479
da Silva, F. G., Shen, Y., Dardick, C., Burdman, S., Yadav, R. C., de Leon, A. L., et al. (2004). Bacterial genes involved in type I secretion and sulfation are required to elicit the rice Xa21-mediated innate immune response. Molecular Plant-Microbe Interactions, 17(6), 593–601.
Darvill, A. G., & Albersheim, P. (1984). Phytoalexins and their elicitors—A defense against microbial infection in plants. Annual Review of Plant Physiology, 35(1), 243–275.
Denoux, C., Galletti, R., Mammarella, N., Gopalan, S., Werck, D., De Lorenzo, G., et al. (2008). Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Molecular Plant, 1(3), 423–445.
Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096. https://doi.org/10.1126/science.1258096
Dow, J. M., Osbourn, A. E., Wilson, T. J. G., & Daniels, M. J. (1995). A locus determining pathogenicity of Xanthomonas campestris is involved in lipopolysaccharide biosynthesis. Molecular Plant-Microbe Interactions, 8(6), 768–777.
Erbs, G., Jensen, T. T., Silipo, A., Grant, W., Dow, J. M., Molinaro, A., et al. (2008). An antagonist of lipid A action in mammals has complex effects on lipid A induction of defense responses in the model plant Arabidopsis thaliana. Microbes and Infection, 10(5), 571–574.
Felix, G., & Boller, T. (2003). Molecular sensing of bacteria in plants. Journal of Biological Chemistry, 278(8), 6201–6208.
Felix, G., Duran, J. D., Volko, S., & Boller, T. (1999). Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. The Plant Journal, 18(3), 265–276.
Fitzgerald, K. A., Rowe, D. C., & Golenbock, D. T. (2003). Endotoxin recognition and signal transduction by the TLR4/MD2 complex. Microbes and Infection, 6(15), 1361–1367.
Gao, C. (2021). Genome editing in crops: From bench to field. Nature Reviews Genetics, 22(7), 472–488. https://doi.org/10.1038/s41576-021-00393-z
Gomez-Gomez, L., & Boller, T. (2002). Flagellin perception: A paradigm for innate immunity. Trends in Plant Science, 7(6), 251–256.
Inohara, N., & Núñez, G. (2003). NODs: Intracellular proteins involved in inflammation and apoptosis. Nature Reviews Immunology, 3(5), 371–382.
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821. https://doi.org/10.1126/science.1225829
Johnson, R., Smith, K., Brown, A., et al. (2023). Microbiome engineering: Manipulating plant–microbe interactions for sustainable agriculture. Nature Reviews Microbiology, 21(4), 215–230. https://doi.org/10.1038/nrmicro.2023.12
Jones, A., Smith, B., Lee, C., et al. (2023). Nanoparticles for precision agriculture: Applications and future perspectives. Nature Reviews Chemistry, 7(2), 110–125. https://doi.org/10.1038/natrevchem.2023.12
Joshi, J. B., Arul, L., Ramalingam, J., & Uthandi, S. (2020). Advances in the Xoo–rice pathosystem interaction and its exploitation in disease management. Journal of Biosciences, 45(1), Article 58.
Joshi, J. B., Maupin-Furlow, J. A., & Uthandi, S. (2022a). Microbial elicitors: Positive and negative modulators of plant defense. In Mitigation of plant abiotic stress by microorganisms (pp. 77–102). Springer.
Joshi, J. B., Senthamilselvi, D., Maupin-Furlow, J. A., & Uthandi, S. (2022b). Microbial protein elicitors in plant defense. In Microbial biocontrol: Sustainable agriculture and phytopathogen management (Vol. 1, pp. 235–256). Springer.
Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323–329.
Mani, T., Joshi, J. B., Priyadharshini, R., Sharmila, J. S., & Uthandi, S. (2023). Flagellin, a plant-defense-activating protein identified from Xanthomonas axonopodis pv. Dieffenbachiae invokes defense response in tobacco. BMC Microbiology, 23, Article 112.
Medzhitov, R. (2007). Recognition of microorganisms and activation of the immune response. Nature, 449(7164), 819–826.
Newman, M.-A., Daniels, M. J., & Dow, J. M. (1995). Lipopolysaccharide from Xanthomonas campestris induces defense-related gene expression in Brassica campestris. Molecular Plant-Microbe Interactions, 8(6), 778–780.
Nguyen, H. P., Chakravarthy, S., Velásquez, A. C., McLane, H. L., Zeng, L., Nakayashiki, H., et al. (2010). Methods to study PAMP-triggered immunity using tomato and Nicotiana benthamiana. Molecular Plant-Microbe Interactions, 23(8), 991–999.
Nomura, K., DebRoy, S., Lee, Y. H., Pumplin, N., Jones, J., & He, S. Y. (2006). A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science, 313(5784), 220–223.
Nothnagel, E. A., McNeil, M., Albersheim, P., & Dell, A. (1983). Host–pathogen interactions XXII: A galacturonic acid oligosaccharide from plant cell walls elicits phytoalexins. Plant Physiology, 71(4), 916–926.
Nürnberger, T., Nennstiel, D., Jabs, T., Sacks, W. R., Hahlbrock, K., & Scheel, D. (1994). High-affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell, 78(3), 449–460.
Park, C. J., & Ronald, P. C. (2012). Cleavage and nuclear localization of the rice XA21 immune receptor. Nature Communications, 3, Article 920.
Park, C. J., Peng, Y., Chen, X., Dardick, C., Ruan, D., Bart, R., et al. (2008). Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity. PLoS Biology, 6(9), e231. https://doi.org/10.1371/journal.pbio.0060231
Ramachandran, P., Joshi, J. B., Maupin-Furlow, J., & Uthandi, S. (2021). Bacterial effectors mimicking ubiquitin–proteasome pathway tweak plant immunity. Microbiological Research, 250, 126810. https://doi.org/10.1016/j.micres.2021.126810
Schiml, S., Fauser, F., & Puchta, H. (2014). The CRISPR/Cas system can be used as a nuclease for in planta gene targeting and beyond. The Plant Journal, 78(5), 735–745. https://doi.org/10.1111/tpj.12494
Shinya, T., Motoyama, N., Ikeda, A., Wada, M., Kamiya, K., Hayafune, M., et al. (2012). Functional characterization of CEBiP and CERK1 homologs in Arabidopsis and rice reveals the presence of different chitin receptor systems in plants. Plant and Cell Physiology, 53(10), 1696–1706.
Smith, A. B., Jones, C. D., Brown, E. F., et al. (2022). Advances in cryo-electron microscopy and X-ray crystallography for understanding PAMP–PRR interactions in plants. Journal of Structural Biology. Advance online publication.
Smith, J., Brown, A., Johnson, R., et al. (2023). High-throughput sequencing technologies and their impact on plant immunity research. Nature Reviews Genetics, 23(5), 312–327. https://doi.org/10.1038/nrgen.2023.45
Smith, J., Brown, A., Zhang, L., et al. (2022). Systems biology approaches in plant immunity: Integrating multi-omics data to decipher regulatory networks. Annual Review of Plant Biology, 73, 153–178. https://doi.org/10.1146/annurev-plantbio-042020-102354
Thomma, B. P. H. J., Nürnberger, T., & Joosten, M. H. A. J. (2011). Of PAMPs and effectors: The blurred PTI–ETI dichotomy. The Plant Cell, 23(1), 4–15.
Voytas, D. F., & Gao, C. (2014). Precision genome engineering and agriculture: Opportunities and regulatory challenges. PLOS Biology, 12(6), e1001877. https://doi.org/10.1371/journal.pbio.1001877
Wang, J., & Chai, J. (2020). Structural insights into the plant immune receptors PRRs and NLRs. Plant Physiology, 182(4), 1566–1581. https://doi.org/10.1104/pp.19.00945
Wang, Y. H., Gehring, C., & Irving, H. R. (2011). Plant natriuretic peptides are apoplastic and paracrine stress response molecules. Plant and Cell Physiology, 52(5), 837–850.
Willmann, R., Lajunen, H. M., Erbs, G., Newman, M.-A., Kolb, D., Tsuda, K., et al. (2011). Arabidopsis lysin motif proteins LYM1, LYM3, and CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proceedings of the National Academy of Sciences of the United States of America, 108(49), 19824–19829.
Yin, K., Gao, C., & Qiu, J.-L. (2017). Progress and prospects in plant genome editing. Nature Plants, 3(8), 17107. https://doi.org/10.1038/nplants.2017.107
Zhang, Y., Malzahn, A. A., Sretenovic, S., & Qi, Y. (2019). The emerging and uncultivated potential of CRISPR technology in plant science. Nature Plants, 5(8), 778–794. https://doi.org/10.1038/s41477-019-0461-5
Zhang, Y., Wu, Z., & Zhang, J. (2005). Lipoteichoic acid enhances bacterial recognition by Toll-like receptor 2. The Journal of Immunology, 174(10), 6393–6401.