The agricultural industry faces significant challenges in ensuring food security as the global population rises and the climate crisis intensifies. Abiotic stressors are widely recognized for reducing crop yield potential and hindering agricultural development worldwide. Among these stressors, water logging, drought, salinity, and heavy metal (HM) contamination are the primary factors that negatively affect plant growth and agricultural productivity. In response to these stresses, plants activate a range of defence mechanisms that alter their biochemical and morpho-physiological processes. Traditional fertilization methods often fail to address these issues effectively, resulting in nutrient losses and environmental degradation. In contrast, nanofertilizers have emerged as a promising alternative, offering enhanced nutrient bioavailability, precise delivery, and improved plant stress tolerance and thus nano-technology is expanding rapidly in nutrient management sector for sustainable crop production.
Nanofertilizers, Abiotic stress, Sustainable agriculture, Nutrient delivery, Efficient nutrient management
Adrees, M., Khan, Z. S., Ali, S., Hafeez, M., Khalid, S., ur Rehman, M. Z., & Rizwan, M. (2020). Simultaneous mitigation of cadmium and drought stress in wheat by soil application of iron nanoparticles. Chemosphere, 238, 124681. DOI: 10.1016/j.chemosphere.2019.124681
Ahmed, T., Noman, M., Manzoor, N., Shahid, M., Abdullah, M., Ali, L., & Li, B. (2021). Nanoparticle-based amelioration of drought stress and cadmium toxicity in rice via triggering the stress responsive genetic mechanisms and nutrient acquisition. Ecotoxicology and Environmental Safety, 209, 111829. DOI: 10.1016/j.ecoenv.2020.111829
Ahmed, T., Noman, M., Rizwan, M., Ali, S., Shahid, M. S., & Li, B. (2023). Recent progress on the heavy metals ameliorating potential of engineered nanomaterials in rice paddy: a comprehensive outlook on global food safety with nanotoxicitiy issues. Critical Reviews in Food Science and Nutrition, 63(16), 2672-2686 DOI: 10.1080/10408398.2021.1979931
Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision. DOI: 10.22004/ag.econ.288998
Campos, D. P. (2022). Proteomics of Plant-Nanoparticle Interaction Mechanism (pp. 67–84). DOI: 10.1007/978-981-19-2503-0_3
Cui, J., Li, Y., Jin, Q., & Li, F. (2020). Silica nanoparticles inhibit arsenic uptake into rice suspension cells via improving pectin synthesis and the mechanical force of the cell wall. Environmental Science: Nano, 7(1), 162-171. DOI: 10.1039/C9EN01035A
Dang, F., Chen, Y.Z., Huang, Y.N., Hintelmann, H., Si, Y.B. and Zhou, D.M., 2019. Discerning the sources of silver nanoparticle in a terrestrial food chain by stable isotope tracer technique. Environmental Science & Technology, 53(7), pp.3802-3810. DOI: 10.1021/acs.est.8b06135
Delfani, M., Baradarn Firouzabadi, M., Farrokhi, N., & Makarian, H. (2014). Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Communications in soil science and plant analysis, 45(4), 530-540. DOI: 10.1080/00103624.2013.863911
El-Zohri, M., Al-Wadaani, N. A., & Bafeel, S. O. (2021). Foliar Sprayed Green Zinc Oxide Nanoparticles Mitigate Drought-Induced Oxidative Stress in Tomato. Plants 2021, 10, 2400. DOI: 10.3390/plants10112400
Gao, F., Hong, F., Liu, C., Zheng, L., Su, M., Wu, X., & Yang, P. (2006). Mechanism of nano-anatase TiO 2 on promoting photosynthetic carbon reaction of spinach: Inducing complex of rubisco-rubisco activase. Biological trace element research, 111, 239-253. DOI: 10.1385/BTER:111:1:239
Gao, M., Zhou, J., Liu, H., Zhang, W., Hu, Y., Liang, J., & Zhou, J. (2018). Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. Science of the Total Environment, 631, 1100-1108. DOI: 10.11654/jaes.2017-1201
Ghafariyan, M.H., Malakouti, M.J., Dadpour, M.R., Stroeve, P. and Mahmoudi, M., (2013). Effects of magnetite nanoparticles on soybean chlorophyll. Environmental science & technology, 47(18), pp.10645-10652. DOI: 10.1021/es402249b
Gohari, G., Mohammadi, A., Akbari, A., Panahirad, S., Dadpour, M. R., Fotopoulos, V., & Kimura, S. (2020). Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific reports, 10(1), 912. DOI: 10.1038/s41598-020-57794-1
Hasanuzzaman, M., Bhuyan, M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681. DOI: 10.3390/antiox9080681
Huang, D., Dang, F., Huang, Y., Chen, N., & Zhou, D. (2022). Uptake, translocation, and transformation of silver nanoparticles in plants. Environmental Science: Nano, 9(1), 12-39.DOI: 10.1039/D1EN00870F
Ikram, M., Raja, N. I., Javed, B., Mashwani, Z. U. R., Hussain, M., Hussain, M., & Akram, A. (2020). Foliar applications of bio-fabricated selenium nanoparticles to improve the growth of wheat plants under drought stress. Green Processing and Synthesis, 9(1), 706-714. DOI: 10.1515/gps-2020-0067
Iqbal, M., Raja, N. I., Mashwani, Z. U. R., Hussain, M., Ejaz, M., & Yasmeen, F. (2019). Effect of silver nanoparticles on growth of wheat under heat stress. Iranian Journal of Science and Technology, Transactions A: Science, 43, 387-395. DOI: 10.1007/s40995-017-0417-4
Isayenkov, S. V., & Maathuis, F. J. (2019). Plant salinity stress: many unanswered questions remain. Frontiers in plant science, 10, 80. DOI: 10.3389/fpls.2019.00080
Kareem, H. A., Hassan, M. U., Zain, M., Irshad, A., Shakoor, N., Saleem, S., & Wang, Q. (2022). Nanosized zinc oxide (n-ZnO) particles pretreatment to alfalfa seedlings alleviate heat-induced morpho-physiological and ultrastructural damages. Environmental Pollution, 303, 119069. DOI: 10.1016/j.envpol.2022.119069
Khan, I., Awan, S. A., Raza, M. A., Rizwan, M., Tariq, R., Ali, S., & Huang, L. (2021). Silver nanoparticles improved the plant growth and reduced the sodium and chlorine accumulation in pearl millet: a life cycle study. Environmental Science and Pollution Research, 28, 13712-13724. DOI: 10.1007/s11356-020-11612-3
Khodakovskaya, M. V., De Silva, K., Biris, A. S., Dervishi, E., & Villagarcia, H. (2012). Carbon nanotubes induce growth enhancement of tobacco cells. ACS nano, 6(3), 2128-2135. DOI: 10.1021/nn204643g
Kumar, A., Singh, S., Gaurav, A. K., Srivastava, S., & Verma, J. P. (2020). Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants. Frontiers in microbiology, 11, 1216. DOI: 10.3389/fmicb.2020.01216
Kumar, S., Prasad, S., Yadav, K. K., Shrivastava, M., Gupta, N., Nagar, S., & Malav, L. C. (2019). Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches-A review. Environmental research, 179, 108792. DOI: 10.1016/j.envres.2019.108792
Li, D., Wang, M., Zhang, T., Chen, X., Li, C., Liu, Y., & Yang, X. (2021). Glycinebetaine mitigated the photoinhibition of photosystem II at high temperature in transgenic tomato plants. Photosynthesis Research, 147, 301-315. DOI: 10.1007/s11120-020-00810-2
Lindsjö, K., Mulwafu, W., Andersson Djurfeldt, A., & Joshua, M. K. (2021). Generational dynamics of agricultural intensification in Malawi: Challenges for the youth and elderly smallholder farmers. International Journal of Agricultural Sustainability, 19(5-6), 423-436. DOI: 10.1080/14735903.2020.1721237
Liu, J., Li, G., Chen, L., Gu, J., Wu, H., & Li, Z. (2021). Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K+/Na+ ratio. Journal of Nanobiotechnology, 19(1), 153. DOI: 10.1186/s12951-021-00892-7
Liu, R., & Lal, R. (2014). Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Scientific reports, 4(1), 5686. DOI: 10.1038/srep05686
Liu, R., & Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the total environment, 514, 131-139. DOI: 10.1016/j.scitotenv.2015.01.104
Mahmoud, L. M., Shalan, A. M., El-Boray, M. S., Vincent, C. I., El-Kady, M. E., Grosser, J. W., & Dutt, M. (2022). Application of silicon nanoparticles enhances oxidative stress tolerance in salt stressed ‘Valencia’sweet orange plants. Scientia Horticulturae, 295, 110856. DOI: 10.1016/j.scienta.2021.110856
Manzoor, N., Ahmed, T., Noman, M., Shahid, M., Nazir, M. M., Ali, L., & Wang, G. (2021). Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat plants, facilitating photosynthetic pigments and restricting cadmium uptake. Science of the Total Environment, 769, 145221. DOI: 10.1016/j.scitotenv.2021.145221
Nazir, M. M., Noman, M., Ahmed, T., Ali, S., Ulhassan, Z., Zeng, F., & Zhang, G. (2022). Exogenous calcium oxide nanoparticles alleviate cadmium toxicity by reducing Cd uptake and enhancing antioxidative capacity in barley seedlings. Journal of Hazardous Materials, 438, 129498. DOI: 10.1016/j.jhazmat.2022.129498
Nehra, A., Kalwan, G., Gill, R., Nehra, K., Agarwala, N., Jain, P. K., & Gill, S. S. (2024). Status of impact of abiotic stresses on global agriculture. In Nanotechnology for Abiotic Stress Tolerance and Management in Crop Plants (pp. 1-21). Academic Press. DOI: 10.1016/B978-0-443-18500-7.00001-6
Noman, M., Shahid, M., Ahmed, T., Tahir, M., Naqqash, T., Muhammad, S., & Aslam, Z. (2020). Green copper nanoparticles from a native Klebsiella pneumoniae strain alleviated oxidative stress impairment of wheat plants by reducing the chromium bioavailability and increasing the growth. Ecotoxicology and Environmental Safety, 192, 110303.DOI: 10.1016/j.ecoenv.2020.110303
Ohama, N., Sato, H., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2017). Transcriptional regulatory network of plant heat stress response. Trends in plant science, 22(1), 53-65.DOI: 10.1016/j.tplants.2016.08.015
Ozturk, M., Turkyilmaz Unal, B., García‐Caparrós, P., Khursheed, A., Gul, A., & Hasanuzzaman, M. (2021). Osmoregulation and its actions during the drought stress in plants. Physiologia plantarum, 172(2), 1321-1335. DOI: 10.1111/ppl.13297
Potter, M., Deakin, J., Cartwright, A., Hortin, J., Sparks, D., Anderson, A. J., & Britt, D. W. (2021). Absence of nanoparticle-induced drought tolerance in nutrient sufficient wheat seedlings. Environmental Science & Technology, 55(20), 13541-13550. DOI: 10.1021/acs.est.1c00453
Qiao, T., Zhao, Y., Zhong, D. B., & Yu, X. (2021). Hydrogen peroxide and salinity stress act synergistically to enhance lipids production in microalga by regulating reactive oxygen species and calcium. Algal Research, 53, 102017. DOI: 10.1016/j.algal.2020.102017
Rady, M. M., Elrys, A. S., Selem, E., Mohsen, A. A., Arnaout, S. M., El-Sappah, A. H., & Desoky, E. S. M. (2023). Spirulina platensis extract improves the production and defenses of the common bean grown in a heavy metals-contaminated saline soil. Journal of Environmental Sciences, 129, 240-257. DOI: 10.1016/j.jes.2022.09.011
Ur Rehman, M. Z., Rizwan, M., Hussain, A., Saqib, M., Ali, S., Sohail, M. I., & Hafeez, F. (2018). Alleviation of cadmium (Cd) toxicity and minimizing its uptake in wheat (Triticum aestivum) by using organic carbon sources in Cd-spiked soil. Environmental Pollution, 241, 557-565. DOI: 10.1016/j.envpol.2018.06.005
Ur Rehman, M. Z., Khalid, H., Akmal, F., Ali, S., Rizwan, M., Qayyum, M. F., & Azhar, M. (2017). Effect of limestone, lignite and biochar applied alone and combined on cadmium uptake in wheat and rice under rotation in an effluent irrigated field. Environmental Pollution, 227, 560-568. DOI: 10.1016/j.envpol.2017.05.003
Rajput, V., Minkina, T., Semenkov, I., Klink, G., Tarigholizadeh, S., & Sushkova, S. (2021). Phylogenetic analysis of hyperaccumulator plant species for heavy metals and polycyclic aromatic hydrocarbons. Environmental Geochemistry and Health, 43, 1629-1654. DOI: 10.1007/s10653-020-005270
Rajput, V., Minkina, T., Sushkova, S., Behal, A., Maksimov, A., Blicharska, E., & Barsova, N. (2020). ZnO and CuO nanoparticles: a threat to soil organisms, plants, and human health. Environmental Geochemistry and Health, 42, 147-158. DOI: 10.1007/s10653-019-00317-3
Raliya, R., & Tarafdar, J. C. (2013). ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agricultural Research, 2, 48-57. DOI: 10.1007/s40003-012-0049-z
Sham, A., Al-Ashram, H., Whitley, K., Iratni, R., El-Tarabily, K. A., & AbuQamar, S. F. (2019). Metatranscriptomic analysis of multiple environmental stresses identifies RAP2. 4 gene associated with Arabidopsis immunity to Botrytis cinerea. Scientific reports, 9(1), 17010. DOI: 10.1038/s41598-019-53694-1
Srinivasan, C., & Saraswathi, R. (2010). Nano-agriculture-carbon nanotubes enhance tomato seed germination and plant growth. Current Science (00113891), 99(3).
Taran, N. Y., Gonchar, O. M., Lopatko, K. G., Batsmanova, L. M., Patyka, M. V., & Volkogon, M. V. (2014). The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale research letters, 9, 1-8. DOI: 10.1186/1556-276X-9-289
Tripathi, D. K., Singh, S., Singh, S., Pandey, R., Singh, V. P., Sharma, N. C., & Chauhan, D. K. (2017). An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant physiology and biochemistry, 110, 2-12. DOI: 10.1016/j.plaphy.2016.07.030
Wahab, A., Munir, A., Saleem, M. H., AbdulRaheem, M. I., Aziz, H., Mfarrej, M. F. B., & Abdi, G. (2023). Interactions of metal‐based engineered nanoparticles with plants: an overview of the state of current knowledge, research progress, and prospects. Journal of Plant Growth Regulation, 42(9), 5396-5416.DOI: 10.1007/s00344-023-10972-7
Wahid, I., Rani, P., Kumari, S., Ahmad, R., Hussain, S. J., Alamri, S., & Khan, M. I. R. (2022). Biosynthesized gold nanoparticles maintained nitrogen metabolism, nitric oxide synthesis, ions balance, and stabilizes the defense systems to improve salt stress tolerance in wheat. Chemosphere, 287, 132142. DOI: 10.1016/j.chemosphere.2021.132142
Yadav, A., Singh, J., Ranjan, K., Kumar, P., Khanna, S., Gupta, M., ... & Sirohi, A. (2020). Heat shock proteins: Master players for heat‐stress tolerance in plants during climate change. Heat stress tolerance in plants: physiological, molecular and genetic perspectives, 189-211. DOI: 10.1002/9781119432401.ch9
Yasmin, H., Mazher, J., Azmat, A., Nosheen, A., Naz, R., Hassan, M. N., & Ahmad, P. (2021). Combined application of zinc oxide nanoparticles and biofertilizer to induce salt resistance in safflower by regulating ion homeostasis and antioxidant defence responses. Ecotoxicology and Environmental Safety, 218, 112262. DOI: 10.1016/j.ecoenv.2021.112262
Ye, Y., Cota-Ruiz, K., Hernández-Viezcas, J. A., Valdes, C., Medina-Velo, I. A., Turley, R. S., & Gardea-Torresdey, J. L. (2020). Manganese nanoparticles control salinity-modulated molecular responses in Capsicum annuum L. through priming: A sustainable approach for agriculture. ACS Sustainable Chemistry & Engineering, 8(3), 1427-1436. DOI: 10.1021/acssuschemeng.9b05615
Zahedi, S. M., Hosseini, M. S., Daneshvar Hakimi Meybodi, N., & Peijnenburg, W. (2021). Mitigation of the effect of drought on growth and yield of pomegranates by foliar spraying of different sizes of selenium nanoparticles. Journal of the Science of Food and Agriculture, 101(12), 5202-5213. DOI: 10.1002/jsfa.11167
Zhang, B. (2015). MicroRNA: a new target for improving plant tolerance to abiotic stress. Journal of experimental botany, 66(7), 1749-1761. DOI: 10.1093/jxb/erv013
Zhao, G., Zhao, Y., Lou, W., Su, J., Wei, S., Yang, X., & Shen, W. (2019). Nitrate reductase-dependent nitric oxide is crucial for multi-walled carbon nanotube-induced plant tolerance against salinity. Nanoscale, 11(21), 10511-10523. DOI: 10.1039/C8NR10514F
Zhou, C. Q., Lu, C. H., Mai, L., Bao, L. J., Liu, L. Y., & Zeng, E. Y. (2021). Response of rice (Oryza sativa L.) roots to nanoplastic treatment at seedling stage. Journal of Hazardous Materials, 401, 123412. DOI: 10.1016/j.jhazmat.2020.123412
Zulfiqar, H. F., Afroze, B., Shakoor, S., Bhutta, M. S., Ahmed, M., Hassan, S., & Rashid, B. (2024). Nanoparticles in Agriculture: Enhancing Crop Resilience and Productivity against Abiotic Stresses. Intechopen journals DOI: 10.5772/intechopen.114843