Advanced Researches in Agricultural Sciences (Volume 1) | Doi : 10.37446/volbook092024/89-100

PAID ACCESS | Published on : 03-May-2025

Nanofertilizers: An Emerging Tool and Effective Solution for Combating Abiotic Stress in Sustainable, Climate Resilient Crop Production System

  • Divya Dubey
  • Plant Nutrition and Stress Physiology Laboratory, Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, India.
  • Nilu Singh
  • Plant Nutrition and Stress Physiology Laboratory, Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, India.
  • Rajneesh Kumar Prajapati
  • Plant Nutrition and Stress Physiology Laboratory, Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, India.
  • Amit Kumar Dixit
  • Plant Nutrition and Stress Physiology Laboratory, Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, India.
  • Girish Chandra Pathak
  • Plant Nutrition and Stress Physiology Laboratory, Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, India.

Abstract

The agricultural industry faces significant challenges in ensuring food security as the global population rises and the climate crisis intensifies. Abiotic stressors are widely recognized for reducing crop yield potential and hindering agricultural development worldwide. Among these stressors, water logging, drought, salinity, and heavy metal (HM) contamination are the primary factors that negatively affect plant growth and agricultural productivity. In response to these stresses, plants activate a range of defence mechanisms that alter their biochemical and morpho-physiological processes. Traditional fertilization methods often fail to address these issues effectively, resulting in nutrient losses and environmental degradation. In contrast, nanofertilizers have emerged as a promising alternative, offering enhanced nutrient bioavailability, precise delivery, and improved plant stress tolerance and thus nano-technology is expanding rapidly in nutrient management sector for sustainable crop production.

Keywords

Nanofertilizers, Abiotic stress, Sustainable agriculture, Nutrient delivery, Efficient nutrient management

References

  • Adrees, M., Khan, Z. S., Ali, S., Hafeez, M., Khalid, S., ur Rehman, M. Z., & Rizwan, M. (2020). Simultaneous mitigation of cadmium and drought stress in wheat by soil application of iron nanoparticles. Chemosphere238, 124681. DOI: 10.1016/j.chemosphere.2019.124681

    Ahmed, T., Noman, M., Manzoor, N., Shahid, M., Abdullah, M., Ali, L., & Li, B. (2021). Nanoparticle-based amelioration of drought stress and cadmium toxicity in rice via triggering the stress responsive genetic mechanisms and nutrient acquisition. Ecotoxicology and Environmental Safety209, 111829. DOI: 10.1016/j.ecoenv.2020.111829

    Ahmed, T., Noman, M., Rizwan, M., Ali, S., Shahid, M. S., & Li, B. (2023). Recent progress on the heavy metals ameliorating potential of engineered nanomaterials in rice paddy: a comprehensive outlook on global food safety with nanotoxicitiy issues. Critical Reviews in Food Science and Nutrition, 63(16), 2672-2686 DOI: 10.1080/10408398.2021.1979931

    Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision. DOI: 10.22004/ag.econ.288998

    Campos, D. P. (2022). Proteomics of Plant-Nanoparticle Interaction Mechanism (pp. 67–84). DOI: 10.1007/978-981-19-2503-0_3

    Cui, J., Li, Y., Jin, Q., & Li, F. (2020). Silica nanoparticles inhibit arsenic uptake into rice suspension cells via improving pectin synthesis and the mechanical force of the cell wall. Environmental Science: Nano, 7(1), 162-171. DOI: 10.1039/C9EN01035A

    Dang, F., Chen, Y.Z., Huang, Y.N., Hintelmann, H., Si, Y.B. and Zhou, D.M., 2019. Discerning the sources of silver nanoparticle in a terrestrial food chain by stable isotope tracer technique. Environmental Science & Technology53(7), pp.3802-3810. DOI: 10.1021/acs.est.8b06135

    Delfani, M., Baradarn Firouzabadi, M., Farrokhi, N., & Makarian, H. (2014). Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Communications in soil science and plant analysis45(4), 530-540. DOI: 10.1080/00103624.2013.863911

    El-Zohri, M., Al-Wadaani, N. A., & Bafeel, S. O. (2021). Foliar Sprayed Green Zinc Oxide Nanoparticles Mitigate Drought-Induced Oxidative Stress in Tomato. Plants 2021, 10, 2400. DOI: 10.3390/plants10112400

    Gao, F., Hong, F., Liu, C., Zheng, L., Su, M., Wu, X., & Yang, P. (2006). Mechanism of nano-anatase TiO 2 on promoting photosynthetic carbon reaction of spinach: Inducing complex of rubisco-rubisco activase. Biological trace element research, 111, 239-253. DOI: 10.1385/BTER:111:1:239

    Gao, M., Zhou, J., Liu, H., Zhang, W., Hu, Y., Liang, J., & Zhou, J. (2018). Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. Science of the Total Environment, 631, 1100-1108. DOI: 10.11654/jaes.2017-1201

    Ghafariyan, M.H., Malakouti, M.J., Dadpour, M.R., Stroeve, P. and Mahmoudi, M., (2013). Effects of magnetite nanoparticles on soybean chlorophyll. Environmental science & technology47(18), pp.10645-10652. DOI: 10.1021/es402249b

    Gohari, G., Mohammadi, A., Akbari, A., Panahirad, S., Dadpour, M. R., Fotopoulos, V., & Kimura, S. (2020). Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific reports, 10(1), 912. DOI: 10.1038/s41598-020-57794-1

    Hasanuzzaman, M., Bhuyan, M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681. DOI: 10.3390/antiox9080681

    Huang, D., Dang, F., Huang, Y., Chen, N., & Zhou, D. (2022). Uptake, translocation, and transformation of silver nanoparticles in plants. Environmental Science: Nano9(1), 12-39.DOI: 10.1039/D1EN00870F

    Ikram, M., Raja, N. I., Javed, B., Mashwani, Z. U. R., Hussain, M., Hussain, M., & Akram, A. (2020). Foliar applications of bio-fabricated selenium nanoparticles to improve the growth of wheat plants under drought stress. Green Processing and Synthesis, 9(1), 706-714. DOI: 10.1515/gps-2020-0067

    Iqbal, M., Raja, N. I., Mashwani, Z. U. R., Hussain, M., Ejaz, M., & Yasmeen, F. (2019). Effect of silver nanoparticles on growth of wheat under heat stress. Iranian Journal of Science and Technology, Transactions A: Science43, 387-395. DOI: 10.1007/s40995-017-0417-4

    Isayenkov, S. V., & Maathuis, F. J. (2019). Plant salinity stress: many unanswered questions remain. Frontiers in plant science, 10, 80. DOI: 10.3389/fpls.2019.00080

    Kareem, H. A., Hassan, M. U., Zain, M., Irshad, A., Shakoor, N., Saleem, S., & Wang, Q. (2022). Nanosized zinc oxide (n-ZnO) particles pretreatment to alfalfa seedlings alleviate heat-induced morpho-physiological and ultrastructural damages. Environmental Pollution303, 119069. DOI: 10.1016/j.envpol.2022.119069

    Khan, I., Awan, S. A., Raza, M. A., Rizwan, M., Tariq, R., Ali, S., & Huang, L. (2021). Silver nanoparticles improved the plant growth and reduced the sodium and chlorine accumulation in pearl millet: a life cycle study. Environmental Science and Pollution Research, 28, 13712-13724. DOI: 10.1007/s11356-020-11612-3

    Khodakovskaya, M. V., De Silva, K., Biris, A. S., Dervishi, E., & Villagarcia, H. (2012). Carbon nanotubes induce growth enhancement of tobacco cells. ACS nano, 6(3), 2128-2135. DOI: 10.1021/nn204643g

    Kumar, A., Singh, S., Gaurav, A. K., Srivastava, S., & Verma, J. P. (2020). Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants. Frontiers in microbiology, 11, 1216. DOI: 10.3389/fmicb.2020.01216

    Kumar, S., Prasad, S., Yadav, K. K., Shrivastava, M., Gupta, N., Nagar, S., & Malav, L. C. (2019). Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches-A review. Environmental research179, 108792. DOI: 10.1016/j.envres.2019.108792

    Li, D., Wang, M., Zhang, T., Chen, X., Li, C., Liu, Y., & Yang, X. (2021). Glycinebetaine mitigated the photoinhibition of photosystem II at high temperature in transgenic tomato plants. Photosynthesis Research, 147, 301-315. DOI: 10.1007/s11120-020-00810-2

    Lindsjö, K., Mulwafu, W., Andersson Djurfeldt, A., & Joshua, M. K. (2021). Generational dynamics of agricultural intensification in Malawi: Challenges for the youth and elderly smallholder farmers. International Journal of Agricultural Sustainability19(5-6), 423-436. DOI: 10.1080/14735903.2020.1721237

    Liu, J., Li, G., Chen, L., Gu, J., Wu, H., & Li, Z. (2021). Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K+/Na+ ratio. Journal of Nanobiotechnology, 19(1), 153. DOI: 10.1186/s12951-021-00892-7

    Liu, R., & Lal, R. (2014). Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Scientific reports, 4(1), 5686. DOI: 10.1038/srep05686

    Liu, R., & Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the total environment, 514, 131-139. DOI: 10.1016/j.scitotenv.2015.01.104

    Mahmoud, L. M., Shalan, A. M., El-Boray, M. S., Vincent, C. I., El-Kady, M. E., Grosser, J. W., & Dutt, M. (2022). Application of silicon nanoparticles enhances oxidative stress tolerance in salt stressed ‘Valencia’sweet orange plants. Scientia Horticulturae, 295, 110856. DOI: 10.1016/j.scienta.2021.110856

    Manzoor, N., Ahmed, T., Noman, M., Shahid, M., Nazir, M. M., Ali, L., & Wang, G. (2021). Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat plants, facilitating photosynthetic pigments and restricting cadmium uptake. Science of the Total Environment, 769, 145221. DOI: 10.1016/j.scitotenv.2021.145221

    Nazir, M. M., Noman, M., Ahmed, T., Ali, S., Ulhassan, Z., Zeng, F., & Zhang, G. (2022). Exogenous calcium oxide nanoparticles alleviate cadmium toxicity by reducing Cd uptake and enhancing antioxidative capacity in barley seedlings. Journal of Hazardous Materials438, 129498. DOI: 10.1016/j.jhazmat.2022.129498

    Nehra, A., Kalwan, G., Gill, R., Nehra, K., Agarwala, N., Jain, P. K., & Gill, S. S. (2024). Status of impact of abiotic stresses on global agriculture. In Nanotechnology for Abiotic Stress Tolerance and Management in Crop Plants (pp. 1-21). Academic Press. DOI: 10.1016/B978-0-443-18500-7.00001-6

    Noman, M., Shahid, M., Ahmed, T., Tahir, M., Naqqash, T., Muhammad, S., & Aslam, Z. (2020). Green copper nanoparticles from a native Klebsiella pneumoniae strain alleviated oxidative stress impairment of wheat plants by reducing the chromium bioavailability and increasing the growth. Ecotoxicology and Environmental Safety192, 110303.DOI: 10.1016/j.ecoenv.2020.110303

    Ohama, N., Sato, H., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2017). Transcriptional regulatory network of plant heat stress response. Trends in plant science22(1), 53-65.DOI: 10.1016/j.tplants.2016.08.015

    Ozturk, M., Turkyilmaz Unal, B., García‐Caparrós, P., Khursheed, A., Gul, A., & Hasanuzzaman, M. (2021). Osmoregulation and its actions during the drought stress in plants. Physiologia plantarum172(2), 1321-1335. DOI: 10.1111/ppl.13297

    Potter, M., Deakin, J., Cartwright, A., Hortin, J., Sparks, D., Anderson, A. J., & Britt, D. W. (2021). Absence of nanoparticle-induced drought tolerance in nutrient sufficient wheat seedlings. Environmental Science & Technology55(20), 13541-13550. DOI: 10.1021/acs.est.1c00453

    Qiao, T., Zhao, Y., Zhong, D. B., & Yu, X. (2021). Hydrogen peroxide and salinity stress act synergistically to enhance lipids production in microalga by regulating reactive oxygen species and calcium. Algal Research53, 102017. DOI: 10.1016/j.algal.2020.102017

    Rady, M. M., Elrys, A. S., Selem, E., Mohsen, A. A., Arnaout, S. M., El-Sappah, A. H., & Desoky, E. S. M. (2023). Spirulina platensis extract improves the production and defenses of the common bean grown in a heavy metals-contaminated saline soil. Journal of Environmental Sciences129, 240-257. DOI: 10.1016/j.jes.2022.09.011

    Ur Rehman, M. Z., Rizwan, M., Hussain, A., Saqib, M., Ali, S., Sohail, M. I., & Hafeez, F. (2018). Alleviation of cadmium (Cd) toxicity and minimizing its uptake in wheat (Triticum aestivum) by using organic carbon sources in Cd-spiked soil. Environmental Pollution241, 557-565. DOI: 10.1016/j.envpol.2018.06.005

    Ur Rehman, M. Z., Khalid, H., Akmal, F., Ali, S., Rizwan, M., Qayyum, M. F., & Azhar, M. (2017). Effect of limestone, lignite and biochar applied alone and combined on cadmium uptake in wheat and rice under rotation in an effluent irrigated field. Environmental Pollution227, 560-568. DOI: 10.1016/j.envpol.2017.05.003

    Rajput, V., Minkina, T., Semenkov, I., Klink, G., Tarigholizadeh, S., & Sushkova, S. (2021). Phylogenetic analysis of hyperaccumulator plant species for heavy metals and polycyclic aromatic hydrocarbons. Environmental Geochemistry and Health43, 1629-1654. DOI: 10.1007/s10653-020-005270

    Rajput, V., Minkina, T., Sushkova, S., Behal, A., Maksimov, A., Blicharska, E., & Barsova, N. (2020). ZnO and CuO nanoparticles: a threat to soil organisms, plants, and human health. Environmental Geochemistry and Health42, 147-158. DOI: 10.1007/s10653-019-00317-3

    Raliya, R., & Tarafdar, J. C. (2013). ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agricultural Research2, 48-57. DOI: 10.1007/s40003-012-0049-z

    Sham, A., Al-Ashram, H., Whitley, K., Iratni, R., El-Tarabily, K. A., & AbuQamar, S. F. (2019). Metatranscriptomic analysis of multiple environmental stresses identifies RAP2. 4 gene associated with Arabidopsis immunity to Botrytis cinerea. Scientific reports9(1), 17010. DOI: 10.1038/s41598-019-53694-1

    Srinivasan, C., & Saraswathi, R. (2010). Nano-agriculture-carbon nanotubes enhance tomato seed germination and plant growth. Current Science (00113891)99(3).

    Taran, N. Y., Gonchar, O. M., Lopatko, K. G., Batsmanova, L. M., Patyka, M. V., & Volkogon, M. V. (2014). The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale research letters9, 1-8. DOI: 10.1186/1556-276X-9-289

    Tripathi, D. K., Singh, S., Singh, S., Pandey, R., Singh, V. P., Sharma, N. C., & Chauhan, D. K. (2017). An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant physiology and biochemistry110, 2-12. DOI: 10.1016/j.plaphy.2016.07.030

    Wahab, A., Munir, A., Saleem, M. H., AbdulRaheem, M. I., Aziz, H., Mfarrej, M. F. B., & Abdi, G. (2023). Interactions of metal‐based engineered nanoparticles with plants: an overview of the state of current knowledge, research progress, and prospects. Journal of Plant Growth Regulation42(9), 5396-5416.DOI: 10.1007/s00344-023-10972-7

    Wahid, I., Rani, P., Kumari, S., Ahmad, R., Hussain, S. J., Alamri, S., & Khan, M. I. R. (2022). Biosynthesized gold nanoparticles maintained nitrogen metabolism, nitric oxide synthesis, ions balance, and stabilizes the defense systems to improve salt stress tolerance in wheat. Chemosphere287, 132142. DOI: 10.1016/j.chemosphere.2021.132142

    Yadav, A., Singh, J., Ranjan, K., Kumar, P., Khanna, S., Gupta, M., ... & Sirohi, A. (2020). Heat shock proteins: Master players for heat‐stress tolerance in plants during climate change. Heat stress tolerance in plants: physiological, molecular and genetic perspectives, 189-211. DOI: 10.1002/9781119432401.ch9

    Yasmin, H., Mazher, J., Azmat, A., Nosheen, A., Naz, R., Hassan, M. N., & Ahmad, P. (2021). Combined application of zinc oxide nanoparticles and biofertilizer to induce salt resistance in safflower by regulating ion homeostasis and antioxidant defence responses. Ecotoxicology and Environmental Safety218, 112262. DOI: 10.1016/j.ecoenv.2021.112262

    Ye, Y., Cota-Ruiz, K., Hernández-Viezcas, J. A., Valdes, C., Medina-Velo, I. A., Turley, R. S., & Gardea-Torresdey, J. L. (2020). Manganese nanoparticles control salinity-modulated molecular responses in Capsicum annuum L. through priming: A sustainable approach for agriculture. ACS Sustainable Chemistry & Engineering8(3), 1427-1436. DOI: 10.1021/acssuschemeng.9b05615

    Zahedi, S. M., Hosseini, M. S., Daneshvar Hakimi Meybodi, N., & Peijnenburg, W. (2021). Mitigation of the effect of drought on growth and yield of pomegranates by foliar spraying of different sizes of selenium nanoparticles. Journal of the Science of Food and Agriculture101(12), 5202-5213. DOI: 10.1002/jsfa.11167

    Zhang, B. (2015). MicroRNA: a new target for improving plant tolerance to abiotic stress. Journal of experimental botany66(7), 1749-1761. DOI: 10.1093/jxb/erv013

    Zhao, G., Zhao, Y., Lou, W., Su, J., Wei, S., Yang, X., & Shen, W. (2019). Nitrate reductase-dependent nitric oxide is crucial for multi-walled carbon nanotube-induced plant tolerance against salinity. Nanoscale11(21), 10511-10523. DOI: 10.1039/C8NR10514F

    Zhou, C. Q., Lu, C. H., Mai, L., Bao, L. J., Liu, L. Y., & Zeng, E. Y. (2021). Response of rice (Oryza sativa L.) roots to nanoplastic treatment at seedling stage. Journal of Hazardous Materials401, 123412. DOI: 10.1016/j.jhazmat.2020.123412

    Zulfiqar, H. F., Afroze, B., Shakoor, S., Bhutta, M. S., Ahmed, M., Hassan, S., & Rashid, B. (2024). Nanoparticles in Agriculture: Enhancing Crop Resilience and Productivity against Abiotic Stresses. Intechopen journals DOI: 10.5772/intechopen.114843