Advanced Researches in Agricultural Sciences (Volume 1) | Doi : 10.37446/volbook092024/250-263

OPEN ACCESS | Published on : 18-Nov-2025

Exploring Rice Metabolomics for Nutritional Enhancement and Stress Resilience

  • Sanjeeva Rao D
  • ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India.
  • Veerendra Jaldhani
  • ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India.
  • Srikanth Bathula
  • ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India.
  • Aravind Kumar J
  • ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India.
  • Neeraja C N
  • ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India.
  • Sundaram R M
  • ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India.

Abstract

Rice is a staple food crop of the world and supports the livelihood of numerous farm families providing energy requirement of billions of people and playing a pivotal role in agro-ecosystem and bio-diversity and also sustains more than half of the global population, especially in Asia. The great opportunities of rice cultivation under varied agro-ecosystem can be successfully explored through intervention of integrated soil and crop management approaches for the benefit of human nutrition and thorough insight on rice Metabolomics for enhancement of nutritional profile and stress resilience for planning futuristic agricultural research to develop highly productive and qualitative rice-based cropping system with sustainable footprints. The diversity of metabolites in rice reflects its nutritional quality, stress response and adaptation to varying environments. Metabolomics, as an emerging omics tool, has revolutionized our understanding of plant metabolism, offering insights into genotype-phenotype linkages. This chapter presents a comprehensive account of rice metabolomics, summarizing studies across nutritional profiling, abiotic and biotic stress responses, and germplasm-specific metabolic diversity. The chapter also emphasizes metabolite-based breeding strategies and the integration of genomics and metabolomics for crop improvement. 

Keywords

Rice, Metabolomics, Abiotic stress, Biotic stress, Heat map

References

  • Agarrwal, R., Bentur, J. S., & Nair, S. (2014). Gas chromatography mass spectrometry based metabolic profiling reveals biomarkers involved in rice‐gall midge interactions. Journal of Integrative Plant Biology, 56(9), 837–848.

    Ashraf, H., Murtaza, I., Nazir, N., Wani, A. B., & Husaini, A. M. (2017). Nutritional profiling of pigmented and scented rice genotypes of Kashmir Himalayas. Journal of Pharmacognosy and Phytochemistry, 6(6), 910–916.

    Da Costa, M. V., Ramegowda, V., Ramakrishnan, P., Nataraja, K. N., & Sheshshayee, M. S. (2022). Comparative metabolite profiling of rice contrasts reveal combined drought and heat stress signatures in flag leaf and spikelets. Plant Science, 320, Article 111262.

    Daygon, V. D., Calingacion, M., Forster, L. C., Voss, J. J., Schwartz, B. D., Ovenden, B., Alonso, D. E., McCouch, S. R., Garson, M. J., & Fitzgerald, M. A. (2017). Metabolomics and genomics combine to unravel the pathway for the presence of fragrance in rice. Scientific Reports, 7(1), Article 8767.

    Deng, G. F., Xu, X. R., Zhang, Y., Li, D., Gan, R. Y., & Li, H. B. (2013). Phenolic compounds and bioactivities of pigmented rice. Critical Reviews in Food Science and Nutrition, 53(3), 296–306.

    Du, W., Lu, Y., Li, Q., Luo, S., Shen, S., Li, N., & Chen, X. (2022). TIR1/AFB proteins: Active players in abiotic and biotic stress signaling. Frontiers in Plant Science, 13, Article 1083409.

    Fukushima, A., Kuroha, T., Nagai, K., Hattori, Y., Kobayashi, M., Nishizawa, T., Kojima, M., Utsumi, Y., Oikawa, A., Seki, M., & Sakakibara, H. (2020). Metabolite and phytohormone profiling illustrates metabolic reprogramming as an escape strategy of deepwater rice during partially submerged stress. Metabolites, 10(2), Article 68.

    Gayen, D., Barua, P., Lande, N. V., Varshney, S., Sengupta, S., Chakraborty, S., & Chakraborty, N. (2019). Dehydration-responsive alterations in the chloroplast proteome and cell metabolomic profile of rice reveals key stress adaptation responses. Environmental and Experimental Botany, 160, 12–24.

    Gong, L., Chen, W., Gao, Y., Liu, X., Zhang, H., Xu, C., Yu, S., Zhang, Q., & Luo, J. (2013). Genetic analysis of the metabolome exemplified using a rice population. Proceedings of the National Academy of Sciences, 110(50), 20320–20325.

    Goufo, P., & Trindade, H. (2014). Rice antioxidants: Phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ‐oryzanol, and phytic acid. Food Science & Nutrition, 2(2), 75–104.

    Gupta, P., & De, B. (2017). Metabolomics analysis of rice responses to salinity stress revealed elevation of serotonin, and gentisic acid levels in leaves of tolerant varieties. Plant Signaling & Behavior, 12(7), Article e1335845.

    Hu, C., Shi, J., Quan, S., Cui, B., Kleessen, S., Nikoloski, Z., Tohge, T., Alexander, D., Guo, L., Lin, H., & Wang, J. (2014). Metabolic variation between japonica and indica rice cultivars as revealed by non-targeted metabolomics. Scientific Reports, 4(1), Article 5067.

    Juliano, B. O. (1985). Rice properties and processing. Food Reviews International, 1(3), 423–445.

    Kumar, M. S., Ali, K., Dahuja, A., & Tyagi, A. (2015). Role of phytosterols in drought stress tolerance in rice. Plant Physiology and Biochemistry, 96, 83–89.

    Kusano, M., Fukushima, A., Kobayashi, M., Hayashi, N., Jonsson, P., Moritz, T., Ebana, K., & Saito, K. (2007). Application of a metabolomic method combining one-dimensional and two-dimensional gas chromatography-time-of-flight/mass spectrometry to metabolic phenotyping of natural variants in rice. Journal of Chromatography B, 855(1), 71–79.

    Kusano, M., Yang, Z., Okazaki, Y., Nakabayashi, R., Fukushima, A., & Saito, K. (2015). Using metabolomic approaches to explore chemical diversity in rice. Molecular Plant, 8(1), 58–67.

    Lan, Z., He, Q., Zhang, M., Liu, H., Fang, L., & Nie, J. (2023). Assessing the effects of cadmium stress on the growth, physiological characteristics, and metabolic profiling of rice (Oryza sativa L.) using HPLC-QTOF/MS. Chemosensors, 11(11), Article 558.

    Liang, C., Guan, Z., Wei, K., Yu, W., Wang, L., Chen, X., & Wang, Y. (2023). Characteristics of antioxidant capacity and metabolomics analysis of flavonoids in the bran layer of green glutinous rice (Oryza sativa L. var. Glutinosa Matsum). Scientific Reports, 13(1), Article 16372.

    Lv, M. Z., Chao, D. Y., Shan, J. X., Zhu, M. Z., Shi, M., Gao, J. P., & Lin, H. X. (2012). Rice carotenoid β-ring hydroxylase CYP97A4 is involved in lutein biosynthesis. Plant and Cell Physiology, 53(6), 987–1002.

    Ma, X., Xia, H., Liu, Y., Wei, H., Zheng, X., Song, C., Chen, L., Liu, H., & Luo, L. (2016). Transcriptomic and metabolomic studies disclose key metabolism pathways contributing to well-maintained photosynthesis under the drought and the consequent drought-tolerance in rice. Frontiers in Plant Science, 7, Article 1886.

    Ma, Y., Li, J., Xue, Y., Xu, Y., Liu, C., & Su, D. (2023). Comprehensive improvement of nutrients and volatile compounds of black/purple rice by extrusion-puffing technology. Frontiers in Nutrition, 10, Article 1248501. (This entry appears twice in your original list, so it's only listed once here.)

    Mishra, A., Singh, B. B., Shakil, N. A., Shamim, M. D., Homa, F., Chaudhary, R., Yadav, P., Srivastava, D., Fatima, P., Sharma, V., & Yadav, M. K. (2024). Effect of high temperature stress on metabolome and aroma in rice grains. Plant Gene, 38, Article 100450.

    Nandhini, D. U., Anbarasu, M., & Somasundaram, E. (2023). Evaluation of different traditional rice landraces for its bioactive compounds. Indian Journal of Traditional Knowledge, 22(3), 483–490.

    Oikawa, A., Matsuda, F., Kusano, M., Okazaki, Y., & Saito, K. (2008). Rice metabolomics. Rice, 1(1), 63–71.

    Okazaki, Y., & Saito, K. (2016). Integrated metabolomics and phytochemical genomics approaches for studies on rice. GigaScience, 5(1), Article s13742-016.

    Pramai, P., Hamid, N. A., Mediani, A., Maulidiani, M., Abas, F., & Jiamyangyuen, S. (2018). Metabolite profiling, antioxidant, and α-glucosidase inhibitory activities of germinated rice: Nuclear-magnetic-resonance-based metabolomics study. Journal of Food and Drug Analysis, 26(1), 47–57.

    Ranjitha, H. P., Gowda, R., Nethra, N., Amruta, N., & Kandikattu, H. K. (2019). Biochemical and metabolomics on rice cultivars. Rice Science, 26(3), 189–194.

    Sana, T. R., Fischer, S., Wohlgemuth, G., Katrekar, A., Jung, K. H., Ronald, P. C., & Fiehn, O. (2010). Metabolomic and transcriptomic analysis of the rice response to the bacterial blight pathogen Xanthomonas oryzae pv. oryzae. Metabolomics, 6(3), 451–465.

    Shammugasamy, B., Ramakrishnan, Y., Ghazali, H. M., & Muhammad, K. (2015). Tocopherol and tocotrienol contents of different varieties of rice in Malaysia. Journal of the Science of Food and Agriculture, 95(4), 672–678.

    Shao, Y., Xu, F., Sun, X., Bao, J., & Beta, T. (2014). Identification and quantification of phenolic acids and anthocyanins as antioxidants in bran, embryo and endosperm of white, red and black rice kernels (Oryza sativa L.). Journal of Cereal Science, 59(2), 211–218.

    Singh, N. K., Rani, M., Sharmila, T. R., & Yadav, A. K. (2017). Flavonoids in rice, their role in health benefits. MOJ Food Processing Technology, 4(3), 96–99.

    Sreenivasulu, N., Alseekh, S., Tiozon Jr., R. N., Graner, A., Martin, C., & Fernie, A. R. (2023). Metabolic signatures from Gene bank collections: an underexploited resource for human health? Annual Review of Food Science and Technology, 14(1), 183–202.

    Subramanian, V., Dhandayuthapani, U. N., Kandasamy, S., Sivaprakasam, J. V., Balasubramaniam, P., Shanmugam, M. K., Nagappan, S., Elangovan, S., Subramani, U. K., Palaniyappan, K., & Vellingiri, G. (2024). Unravelling the metabolomic diversity of pigmented and non-pigmented traditional rice from Tamil Nadu, India. BMC Plant Biology, 24(1), Article 402.

    Suharti, W. S., Nose, A., & Zheng, S. H. (2016). Metabolite profiling of sheath blight disease resistance in rice: In the case of positive ion mode analysis by CE/TOF-MS. Plant Production Science, 19(2), 279–290.

    Tian, Y. S., Fu, X. Y., Yang, Z. Q., Wang, B., Gao, J. J., Wang, M. Q., Xu, J., Han, H. J., Li, Z. J., Yao, Q. H., & Peng, R. H. (2020). Metabolic engineering of rice endosperm for betanin biosynthesis. New Phytologist, 225(5), 1915–1922.

    Tiozon, R. J., Sreenivasulu, N., Alseekh, S., Sartagoda, K. J., Usadel, B., & Fernie, A. R. (2023). Metabolomics and machine learning technique revealed that germination enhances the multi-nutritional properties of pigmented rice. Communications Biology, 6(1), Article 1000.

    Tyagi, A., Shabbir, U., Chen, X., Chelliah, R., Elahi, F., Ham, H. J., & Oh, D. H. (2022). Phytochemical profiling and cellular antioxidant efficacy of different rice varieties in colorectal adenocarcinoma cells exposed to oxidative stress. PLoS ONE, 17(6), Article e0269403.

    Udhaya Nandhini, D., Venkatesan, S., Senthilraja, K., Janaki, P., Prabha, B., Sangamithra, S., Vaishnavi, S. J., Meena, S., Balakrishnan, N., Raveendran, M., & Geethalakshmi, V. (2023). Metabolomic analysis for disclosing nutritional and therapeutic prospective of traditional rice cultivars of Cauvery deltaic region, India. Frontiers in Nutrition, 10, Article 1254624.

    Yang, M., Yang, J., Su, L., Sun, K., Li, D., Liu, Y., Wang, H., Chen, Z., & Guo, T. (2019). Metabolic profile analysis and identification of key metabolites during rice seed germination under low-temperature stress. Plant Science, 289, Article 110282.

    Yang, Z., Nakabayashi, R., Okazaki, Y., Mori, T., Takamatsu, S., Kitanaka, S., Kikuchi, J., & Saito, K. (2014). Toward better annotation in plant metabolomics: Isolation and structure elucidation of 36 specialized metabolites from Oryza sativa (rice) by using MS/MS and NMR analyses. Metabolomics, 10(4), 543–555.

    Zaghum, M. J., Ali, K., & Teng, S. (2022). Integrated genetic and omics approaches for the regulation of nutritional activities in rice (Oryza sativa L.). Agriculture, 12(11), Article 1757.

    Zhang, Q., Li, T., Gao, M., Ye, M., Lin, M., Wu, D., Guo, J., Guan, W., Wang, J., Yang, K., & Zhu, L. (2022). Transcriptome and metabolome profiling reveal the resistance mechanisms of rice against brown planthopper. International Journal of Molecular Sciences, 23(8), Article 4083.

    Zhang, Z., Zhang, F., Deng, Y., Sun, L., Mao, M., Chen, R., Qiang, Q., Zhou, J., Long, T., Zhao, X., & Liu, X. (2022). Integrated metabolomics and transcriptomics analyses reveal the metabolic differences and molecular basis of nutritional quality in landraces and cultivated rice. Metabolites, 12(5), Article 384.

    Zhao, G. C., Zhang, Y. X., Sun, S. Y., Xie, M. X., Hu, C. Y., Shi, Y. Q., Shi, J. X., & Li, J. Y. (2019). Identification of the biochemical characteristics of developing giant embryo rice grains using non-targeted metabolomics. Journal of Cereal Science, 85, 70–76.

    Zhao, X., Wang, W., Xie, Z., Gao, Y., Wang, C., Rashid, M. M., Islam, M. R., Fu, B., & Li, Z. (2018). Comparative analysis of metabolite changes in two contrasting rice genotypes in response to low-nitrogen stress. The Crop Journal, 6(5), 464–474.

    Zhao, Y., Hu, J., Zhou, Z., Li, L., Zhang, X., He, Y., Zhang, C., Wang, J., & Hong, G. (2024). Biofortified rice provides rich sakuranetin in endosperm. Rice, 17(1), Article 19.