Advances in Animal Sciences (Volume 1) | Doi : 10.37446/volbook022025/26-34

PAID ACCESS | Published on : 21-Jun-2025

Artificial Intelligence in Livestock Genetics and Genomic Selection

  • Saalom King J
  • College of Veterinary and Animal Sciences (KVASU), Mannuthy, Kerala, India.
  • Mani Jeyakumar
  • Assistant Professor, Department of Animal Genetics and Breeding, Veterinary College and Research Institute (TANUVAS), Namakkal, Tamil Nadu, India.

Abstract

The integration of artificial intelligence (AI) into livestock genetics and genomic selection represents a transformative shift in modern animal breeding. AI-driven approaches, including machine learning (ML) and deep learning (DL), enhance the accuracy and efficiency of genomic selection (GS), enabling early prediction of breeding values, optimized trait selection and improved disease resistance. This chapter explores the core applications of AI in livestock genetics, such as genomic prediction, image-based phenotyping and precision health monitoring, while highlighting the technological foundations—next-generation sequencing, high-performance computing and IoT-enabled data collection—that make these advancements possible. Case studies across dairy cattle, swine, poultry and aquaculture demonstrate AI’s real-world impact, from accelerating genetic gain to enhancing animal welfare. However, challenges such as data quality, model interpretability and ethical concerns around genetic modification and data ownership must be addressed. Future directions include multi-omics integration, digital twins and quantum computing for advanced breeding optimization. By balancing innovation with ethical responsibility, AI can drive sustainable, equitable progress in livestock production. The goal is to illustrate how AI can be a powerful ally in developing a smarter, more sustainable future for livestock sectors.

Keywords

Artificial intelligence, Livestock genetics, Genomic selection, Machine learning, Precision breeding, Animal genomics, Bioinformatics, Ethical AI

References

  • Astill, J., Dara, R. A., Fraser, E. D. G., Roberts, B., & Sharif, S. (2020). Smart poultry management: Smart sensors, big data and the internet of things. Computers and Electronics in Agriculture, 170, 105291. https://doi.org/10.1016/j.compag.2020.105291

    Bedi, G., Carrillo, F., Cecchi, G. A., Fernández Slezak, D., Sigman, M., Mota, N. B., Ribeiro, S., Javitt, D. C., Copelli, M., & Corcoran, C. M. (2015). Automated analysis of free speech predicts psychosis onset in high-risk youths. NPJ Schizophrenia, 1, 15030. https://doi.org/10.1038/npjschz.2015.30

    Berry, D. P., O’Brien, A., Wall, E., McDermott, K., Randles, S., Flynn, P., Park, S., Grose, J., Weld, R., & McHugh, N. (2016). Inter- and intra-reproducibility of genotypes from sheep technical replicates on Illumina and Affymetrix platforms. Genetics Selection Evolution, 48, 86. https://doi.org/10.1186/s12711-016-0255-7

    Carvalheiro, R. (2014). Genomic selection in Nellore cattle in Brazil. In Proceedings of the 10th World Congress on Genetics Applied to Livestock Production (Vol. Species Breeding Beef Cattle, p. 258).

    Chen, C., Zhu, W., Steibel, J., Siegford, J., & Han, J. (2020). A computer vision approach for recognition of the engagement of pigs with different enrichment objects. Computers and Electronics in Agriculture, 175, 105585. https://doi.org/10.1016/j.compag.2020.105585

    de Roos, A. P. W., Hayes, B. J., & Goddard, M. E. (2009). Reliability of genomic predictions across multiple populations. Genetics, 183(4), 1545–1553. https://doi.org/10.1534/genetics.109.104935

    Ellis, J. L., Del Prado, A., Mollenhorst, H., & de Boer, I. J. M. (2020). Synergy between mechanistic modelling and data-driven models for modern animal production systems in the era of big data. Animal, 14(s1), s223–s237. https://doi.org/10.1017/S175173111900329X

    Ezanno, P., Picault, S., Beaunée, G., Bailly, X., Muñoz, F., Duboz, R., Monod, H., & Guégan, J. F. (2021). Research perspectives on animal health in the era of artificial intelligence. Veterinary Research, 52(1), 40. https://doi.org/10.1186/s13567-021-00902-4

    Fan, S., Bielenberg, D. G., Zhebentyayeva, T. N., Reighard, G. L., Okie, W. R., Holland, D., & Abbott, A. G. (2010). Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytologist, 185(4), 917–930. https://doi.org/10.1111/j.1469-8137.2009.03119.x

    Fernandes Junior, G. A. (2016). Genomic prediction of breeding values for carcass traits in Nellore cattle. Genetics Selection Evolution, 48(1), 7. https://doi.org/10.1186/s12711-016-0187-2

    Gautam, K. R., Vukadinović, D., & Rengel, D. (2021). Machine learning for improvement of thermal conditions inside a hybrid ventilated animal building. Computers and Electronics in Agriculture, 187, 106270. https://doi.org/10.1016/j.compag.2021.106270

    Henryon, M., Berg, P., & Sørensen, A. C. (2014). Animal breeding schemes using genomic information need breeding plans designed to maximise long-term genetic gains. Livestock Science, 166, 38–47. https://doi.org/10.1016/j.livsci.2014.05.034

    Hiendleder, S., Bauersachs, S., Boulesteix, A., Blum, H., Arnold, G. J., & Fröhlich, T. (2005). Functional genomics: Tools for improving farm animal health and welfare. Revue Scientifique et Technique (International Office of Epizootics), 24(1), 355–377.

    Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., & Aerts, H. J. W. L. (2018). Artificial intelligence in radiology. Nature Reviews Cancer, 18(8), 500–510. https://doi.org/10.1038/s41571-018-0016-5

    Ibañez-Escriche, N., & Gonzalez-Recio, O. (2011). Promises, pitfalls and challenges of genomic selection in breeding programs. Spanish Journal of Agricultural Research, 9(2), 404–413. http://revistas.inia.es/index.php/sjar/article/view/1730

    Ibtisham, F., Zhang, L., Xiao, M., An, L., Ramzan, M., Nawab, A., Zhao, Y., Li, G., & Xu, Y. (2017). Genomic selection and its application in animal breeding. Thai Journal of Veterinary Medicine, 47(3), 301–310. https://doi.org/10.56808/2985-1130.2838

    Karczewski, K. J., & Snyder, M. P. (2018). Integrative omics for health and disease. Nature Reviews Genetics, 19(5), 299–310. https://doi.org/10.1038/nrg.2018.4

    Meuwissen, T., & Goddard, M. (2010). Accurate prediction of genetic values for complex traits by whole-genome resequencing. Genetics, 185(2), 623–631. https://doi.org/10.1534/genetics.110.116590

    Meuwissen, T., Hayes, B., & Goddard, M. (2016). Genomic selection: A paradigm shift in animal breeding. Animal Frontiers, 6(1), 6–14. https://doi.org/10.2527/af.2016-0002

    Saria, S., Butte, A., & Sheikh, A. (2018). Better medicine through machine learning: What’s real and what’s artificial? PLOS Medicine, 15(12), e1002721. https://doi.org/10.1371/journal.pmed.1002721

    Schaeffer, L. R. (2006). Strategy for applying genome-wide selection in dairy cattle. Journal of Animal Breeding and Genetics, 123(4), 218–223. https://doi.org/10.1111/j.1439-0388.2006.00595.x

    Schlötterer, C. (2004). The evolution of molecular markers—Just a matter of fashion? Nature Reviews Genetics, 5(1), 63–69. https://doi.org/10.1038/nrg1249

    Van Eenennaam, A. L., Weigel, K. A., Young, A. E., Cleveland, M. A., & Dekkers, J. C. (2014). Applied animal genomics: Results from the field. Annual Review of Animal Biosciences, 2, 105–139. https://doi.org/10.1146/annurev-animal-022513-114119

    Zhang, W., Chien, J., Yong, J., & Kuang, R. (2017). Network-based machine learning and graph theory algorithms for precision oncology. NPJ Precision Oncology, 1, 25. https://doi.org/10.1038/s41698-017-0027-5