Wheat (Triticum aestivum), a staple crop of global importance, belongs to the Poaceae family and plays a vital role in food security by providing a significant source of dietary protein. Hexaploid wheat accounts for 95% of global wheat cultivation, primarily used for bread production, while tetraploid durum wheat makes up the remaining 5%, mostly for pasta. The evolutionary origin of wheat through hybridization in the Middle East has resulted in a complex allohexaploid genome, presenting challenges for genetic improvement. Traditional wheat breeding methods, grounded in Mendelian genetics, has contributed to yield increases and reduced crop losses but is limited by their time-consuming nature and inability to keep pace with rapidly evolving pests and diseases. To address these challenges, in vitro technologies and biotechnological advancements have been employed to introduce genetic variability and accelerate the development of cultivars with desirable traits. These innovations allow for the precise incorporation of genes from diverse organisms into wheat, expanding the genetic pool and enabling the development of varieties with improved resistance to both biotic and abiotic stresses, enhanced yields, and greater input-use efficiency. Despite the progress achieved since the Green Revolution, wheat production continues to face significant threats from climate change, growing populations, and environmental pressures. The hexaploid genome's inherent gene redundancy and linkage challenges further complicate genetic advancements. To ensure global food security and promote sustainable agricultural practices, the application of cutting-edge biotechnological tools is essential. These technologies hold the potential to enhance wheat resilience, improve yield, and contribute to ecological sustainability in the face of mounting global challenges.
Triticum aestivum, Hexaploid genome, Molecular breeding, Biotic and Abiotic stress tolerance, Genetic variability
Aggarwal, S., Kumar, S., Bhati, J., Suneja, P., Jain, N., & Sharma, R. (2018). RNA interference-mediated suppression of IPK1 gene improves mineral bioavailability in wheat by reducing phytic acid content. Journal of Agricultural and Food Chemistry, 66(11), 2819-2828. https://doi.org/10.1021/acs.jafc.8b00340
Akhunov, E. D., Akhunova, A. R., Anderson, O. D., Anderson, J. A., Blake, N., Clegg, M. T., ... & Dvorak, J. (2003). Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes. BMC Genomics, 4(1), 11. https://doi.org/10.1186/1471-2164-4-11
Arora, S., Ma, X., & Singh, P. (2018). AgRenSeq: A novel approach to clone resistance genes using GWAS and RenSeq. Frontiers in Plant Science, 9, 1044. https://doi.org/10.3389/fpls.2018.01044
Arora, S., Singh, N., Dhillon, G. S., Bains, N. S., & Uauy, C. (2019). Genetic analysis of iron and copper content in wheat using genotyping-by-sequencing markers. Scientific Reports, 9, 2122. https://doi.org/10.1038/s41598-018-33935-3
Ashraf, M., & Harris, P. J. C. (2013). Abiotic stress and its effects on plants. In Abiotic stress response in plants (pp. 1-19). Springer.
Baulcombe, D. (2004). RNA silencing in plants. Nature, 431(7006), 356-363. https://doi.org/10.1038/nature02874
Bhat, J. A., Ali, S., Salgotra, R. K., Mir, Z. A., Dutta, S., Jadon, V., Tyagi, A., Mushtaq, M., Jain, N., & Singh, K. P. (2018). Molecular breeding for biofortification of wheat with essential amino acids and micronutrients. Indian Journal of Genetics and Plant Breeding, 78(2), 162-170. https://doi.org/10.5958/0975-6906.2018.00023.7
Boch, J., & Bonas, U. (2010). Xanthomonas AvrBs3 family-type III effectors: Discovery and function. Annual Review of Phytopathology, 48, 419-436. https://doi.org/10.1146/annurev-phyto-073009-114433
Borisjuk, N., Kishchenko, O., Eliby, S., Schramm, C., Anderson, P., Jatayev, S., & Shavrukov, Y. (2019). Genetic modification for wheat improvement: From transgenesis to genome editing. BioMed Research International, 2019, 6216304. https://doi.org/10.1155/2019/6216304
Borrill, P., Vogel, J. P., & Grover, C. E. (2015). The challenges of wheat genome sequencing and assembly. Current Opinion in Plant Biology, 24, 68-74. https://doi.org/10.1016/j.pbi.2015.02.002
Bortesi, L., & Fischer, R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances, 33(1), 41-52. https://doi.org/10.1016/j.biotechadv.2014.12.006
Brenchley, R., Spannagl, M., Pfeifer, M., Barker, G. L., D'Amore, R., Allen, A. M., ... & Hall, N. (2012). Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature, 491(7426), 705-710. https://doi.org/10.1038/nature11650
Bucio, J. M., Hernandez, O., & Gallardo, R. (2020). Identification of QTLs for heat tolerance in wheat. Journal of Experimental Botany, 71(8), 2451-2464. https://doi.org/10.1093/jxb/eraa129
Cakmak, I., & Yazici, M. A. (2022). Biofortification of wheat with zinc through genetic modifications and agronomic approaches. Frontiers in Plant Science, 13, 877309. https://doi.org/10.3389/fpls.2022.877309
Cavanagh, C. R., Shahid, Ms., & Gadaleta, A. (2013). Genome-wide association mapping of agronomic traits in wheat. Frontiers in Plant Science, 4, 12. https://doi.org/10.3389/fpls.2013.00012
Chapman, J. A., Mascher, M., Bulu, Y., Barry, K., Georganas, E., Session, A., ... & Poland, J. (2015). A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biology, 16, 26. https://doi.org/10.1186/s13059-015-0582-8
Chaves, M. M., Pereira, J. S., & Maroco, J. P. (2003). Understanding plant responses to drought. Journal of Experimental Botany, 54(377), 185-199. https://doi.org/10.1093/jxb/erg019
Chen, S., Wang, Z., & Zhang, J. (2012a). Advances in plant biotechnology for stress tolerance. Biotechnology Advances, 30(3), 410-424. https://doi.org/10.1016/j.biotechadv.2011.09.007
Chen, Y., Li, S., Gao, L., Zhang, J., & Liu, W. (2023). Enhancing mineral bioavailability in wheat through genetic modification: Phytase gene (PhyA) overexpression. Food and Nutrition Research, 67, 102380. https://doi.org/10.29219/fnr.v67.102380
Cheng, M., Fry, J. E., Pang, S., et al. (1997). Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiology, 115(3), 971–980. https://doi.org/10.1104/pp.115.3.971
Chhikara, S., Chaudhary, D., Yadav, M., Sainger, M., & Jaiwal, P. K. (2012). A non-tissue culture approach for developing transgenic Brassica juncea L. plants with Agrobacterium tumefaciens. In Vitro Cellular & Developmental Biology-Plant, 48(1), 7-14. https://doi.org/10.1007/s11627-011-9394-4
Chung, M. H., Chen, M. K., & Pan, S. M. (2000). Floral spray transformation can efficiently generate Arabidopsis transgenic plants. Transgenic Research, 9(6), 471-486. https://doi.org/10.1023/A:1008918620902
Clough, S. J., & Bent, A. F. (1998). Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 16(6), 735-743. https://doi.org/10.1046/j.1365-313x.1998.00343.x
Collard, B. C. Y., & Mackill, D. J. (2008). Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 557-572. https://doi.org/10.1098/rstb.2007.2170
Collard, B. C. Y., Jahufer, M. Z. Z., Brouwer, J. B., & Pang, E. C. K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica, 142(1-2), 169-196. https://doi.org/10.1007/s10681-005-1681-5
Curtis, B. C., Rajaram, S., & Gómez Macpherson, H. (2002). Bread wheat: Improvement and production. FAO Plant Production and Protection Series No. 30. Food and Agriculture Organization of the United Nations.
Dangl, J. L., Horvath, D. M., & Staskawicz, B. J. (2013). Pivoting the plant immune system from dissection to deployment. Science, 341(6147), 746-751. https://doi.org/10.1126/science.1236011
Demirer, G. S., Zhang, H., Matos, J. L., Goh, N. S., Cunningham, F. J., Sung, Y., ... & Aditham, A. J. (2019). High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nature Nanotechnology, 14(5), 456–464. https://doi.org/10.1038/s41565-019-0371-4
Eapen, S. (2011). Pollen grains as a target for introduction of foreign genes into plants: An assessment. Physiology and Molecular Biology of Plants, 17(1), 1–8. https://doi.org/10.1007/s12298-011-0012-8
Ellis, J. G., Lagudah, E. S., Spielmeyer, W., & Dodds, P. N. (2014). The past, present and Future of breeding rust resistant wheat. Frontiers in Plant Science, 5, 641. https://doi.org/10.3389/fpls.2014.00641
Ellis, M. H., Kuang, H., & Kumpatla, S. P. (2004). Identification and characterization of genes involved in pre-harvest sprouting. Plant Molecular Biology, 56(1), 43-59. https://doi.org/10.1007/s11103-004-0137-5
Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One, 6(5), e19379. https://doi.org/10.1371/journal.pone.0019379
Errum, A., Shaheen, T., Shabir, S., & Khan, A. S. (2023). CRISPR/Cas9 mediated genome editing of Ppd-1 homoeologs enhances nutrient content and stress resilience in wheat. Plant Biotechnology Journal, 21(5), 821-836. https://doi.org/10.1111/pbi.13868
Feuillet, C., Travella, S., Stein, N., Albar, L., Nublat, A., & Keller, B. (2003). Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proceedings of the National Academy of Sciences, 100(25), 15253-15258. https://doi.org/10.1073/pnas.2435133100
Frame, B. R., Drayton, P. R., Bagnall, S. V., Lewnau, C. J., Bullock, W. P., Wilson, H. M., ... & Wang, K. (1994). Production of fertile transgenic maize plants by silicon carbide whisker–mediated transformation. The Plant Journal, 6(6), 941-948. https://doi.org/10.1046/j.1365-313x.1994.06060941.x
Friebe, B., Jiang, J., Raupp, W. J., McIntosh, R. A., & Gill, B. S. (1996). Characterization of wheat-alien translocations conferring resistance to diseases and pests: Current status. Euphytica, 91(1), 59-87. https://doi.org/10.1007/BF00035277
Gao, L., Wang, S., & Zhang, Y. (2021). Transgenic wheat with enhanced iron and zinc accumulation by overexpressing ferritin and nicotianamine synthase genes. Plant Molecular Biology Reporter, 39, 338-349. https://doi.org/10.1007/s11105-021-01376-1
Gautier, M., Causse, M., & Moreau, L. (2007). QTL analysis of abiotic stress resistance in plants. Theoretical and Applied Genetics, 114(1), 1-11. https://doi.org/10.1007/s00122-006-0453-3
Gil-Humanes, J., Piston, F., Barro, F., Rosell, C. M., & Carrera, L. (2010). RNAi to downregulate gliadins in wheat: Silencing toxic peptides in bread and food. Journal of Agricultural and Food Chemistry, 58(7), 4720-4728. https://doi.org/10.1021/jf9035209
Giorgi, F., & Lionello, P. (2008). Climate change projections for the Mediterranean region. Global and Planetary Change, 63(2), 90-104. https://doi.org/10.1016/j.gloplacha.2007.09.005
Gupta, P. K., Balyan, H. S., & Gahlaut, V. (2020). Progress in genome-wide association studies of wheat and their impact on wheat improvement. Current Opinion in Plant Biology, 56, 158-171. https://doi.org/10.1016/j.pbi.2020.01.001
Gupta, P. K., Varshney, R. K., Sharma, P. C., & Ramesh, B. (1999). Molecular markers and their applications in wheat breeding. Plant Breeding, 118(5), 369-390. https://doi.org/10.1046/j.1439-0523.1999.00401.x
Gutierrez-Valdes, N., Häkkinen, S. T., Lemasson, C., Guillet, M., Oksman-Caldentey, K. M., Ritala, A., & Cardon, F. (2020). Hairy root cultures—a versatile tool with multiple applications. Frontiers in Plant Science, 11, 33. https://doi.org/10.3389/fpls.2020.00033
Halder, T., Choudhary, M., Liu, H., Chen, Y., Yan, G., & Siddique, K. H. M. (2022). Wheat proteomics for abiotic stress tolerance and root system architecture: Current status and future prospects. Proteomics, 22(5-6), 2100201. https://doi.org/10.1002/pmic.202100201
Haug, A., Graham, R. D., & Christensen, R. (2003). Biotechnology for improved nutritional quality in cereals. Plant Breeding Reviews, 22, 153-188. https://doi.org/10.1002/9780470650350.ch4
Haug, W., & Loneragan, J. F. (2021). Genetic manipulation of zinc transporters to increase zinc concentration in wheat. Plant and Soil, 462(1-2), 275-289. https://doi.org/10.1007/s11104-021-04961-4
Hauser, F., Li, Z., Waadt, R., Schroeder, J. I., & Assmann, S. M. (2011). Roles of receptor-like kinases in guard cell signaling and drought tolerance. Plant Physiology, 155(2), 800-808. https://doi.org/10.1104/pp.110.168915
He, C., Holme, J., & Anthony, J. (2014). SNP genotyping: The KASP assay. In Methods in molecular biology (Vol. 1145, pp. 75-86). Springer. [https://doi.org/10.1007/978-1-4939-0424-7_6] (https://doi.org/10.1007/978-1-4939-0424-7_6)
He, F., Wang, C., Sun, H., Tian, S., Zhao, G., Liu, C., Wan, C., Guo, J., Huang, X., Zhan, G., & Yu, X. (2023). Simultaneous editing of three homoeologues of TaCIPK14 confers broad‐spectrum resistance to stripe rust in wheat. Plant Biotechnology Journal, 21(2), 354-368. https://doi.org/10.1111/pbi.13888
Heffner, E. L., Sorrells, M. E., & Jannink, J. L. (2009). Genomic selection for crop improvement. Crop Science, 49(1), 1-12. https://doi.org/10.2135/cropsci2008.08.0512
Hess, D., Dressler, K., & Nimmrichter, R. (1990). Transformation experiments by pipetting Agrobacterium into the spikelets of wheat (Triticum aestivum L.). Plant Science, 72(2), 233–244. https://doi.org/10.1016/0168-9452(90)90129-X
Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6), 1262-1278. https://doi.org/10.1016/j.cell.2014.05.010
Huang, L., Brooks, S. A., Li, W., Fellers, J. P., Trick, H. N., & Gill, B. S. (2003). Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploidy genome of bread wheat. Genetics, 164(2), 655-664. https://doi.org/10.1093/genetics/164.2.655
Ibrahim, A., Molla, A., & Zabet, R. (2021). CRISPR/Cas9 mediated knockout of TaIPK1 gene improves iron and zinc bioavailability in wheat. Crop Science, 61(6), 4273-4282. https://doi.org/10.1002/csc2.20897
Ishida, Y., Hiei, Y., & Komari, T. (2015). High efficiency wheat transformation mediated by Agrobacterium tumefaciens. In Advances in wheat genetics: From genome to field: Proceedings of the 12th International Wheat Genetics Symposium (pp. 167-173). Springer Japan.
Ismail, H., Gillespie, A. L., Calderwood, D., Iqbal, H., Gallagher, C., Chevallier, O. P., ... & Green, B. D. (2019). The health-promoting bioactivities of Lactuca sativa can be enhanced by genetic modulation of plant secondary metabolites. Metabolites, 9(5), 97. https://doi.org/10.3390/metabo9050097
Jander, G., Norris, S. R., Rounsley, S. D., Bush, D. F., Levin, I. M., & Last, R. L. (2002). Arabidopsis map-based cloning in the post-genome era. Plant Physiology, 129(2), 440-450. https://doi.org/10.1104/pp.010728
Jiang, Y., Wang, H., & Chen, W. (2018). TaGBF1, a blue light responsive G-box binding factor, is involved in salt stress signaling. Plant Science, 270, 89-99. https://doi.org/10.1016/j.plantsci.2018.01.003
Jones, H. D. (2015). Regulatory uncertainty over genome editing. Nature Plants, 1(14011). https://doi.org/10.1038/nplants.2014.11
Kamble, S., Shinde, H., Deshpande, A., & Patil, R. (2022). Integrated genome-wide association studies and multi-omics for biofortification in wheat. Frontiers in Genetics, 13, 832711. https://doi.org/10.3389/fgene.2022.832711
Kefale, H., & Getahun, S. (2022). Gene editing improves the agronomic important traits of wheat–CRISPR-Cas9 and Cas12/Cpf1. In Wheat - Recent Advances. IntechOpen. Retrieved from https://www.intechopen.com/chapters/82269
Keller, B., Krattinger, S. G., & Keller, B. (2018). Genetics and molecular biology of rust resistance in wheat. Plant Pathology Journal, 34(1), 1-18. https://doi.org/10.5423/PPJ.RW.08.2017.0155
Kilian, A., Chen, J., Han, F., Steffenson, B. J., & Kleinhofs, A. (1997). Towards map-based cloning of the barley stem rust resistance genes Rpg1 and Rpg4. Molecular and General Genetics MGG, 255(5), 529-536. https://doi.org/10.1007/s004380050528
Klein, T. M., Wolf, E. D., Wu, R., & Sanford, J. C. (1987). High-velocity microprojectiles for delivering nucleic acids into living cells. Nature, 327(6117), 70-73. https://doi.org/10.1038/327070a0
Krattinger, S. G., Lagudah, E. S., Spielmeyer, W., Singh, R. P., Huerta-Espino, J., McFadden, H., ... & Keller, B. (2009). A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 323(5919), 1360-1363. https://doi.org/10.1126/science.1166453
Kumar, A., et al. (2012). QTL analysis and mapping for drought tolerance in wheat. Theoretical and Applied Genetics, 125(5), 785-798. https://doi.org/10.1007/s00122-012-1928-2
Kumar, A., Gopalan, A., & Ravikumar, P. (2018). Emerging methodologies for enhancing crop production. Plant Biotechnology Journal, 16(1), 1-17. https://doi.org/10.1111/pbi.12865
Kumar, A., Sharma, N., & Singh, S. (2019). RNAi-mediated downregulation of lipoxygenase gene in wheat enhances shelf life and flavor stability. Food Chemistry, 272, 605-613. https://doi.org/10.1016/j.foodchem.2018.08.063
Lawrenson, T., Shorinola, O., Stacey, N., Li, C., Østergaard, L., Patron, N., ... & Uauy, C. (2015). Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biology, 16, 258. https://doi.org/10.1186/s13059-015-0808-1
Li, J., Jiao, G., Sun, Y., Chen, J., Zhong, Y., Yan, L., Jiang, D., Ma, Y., & Xia, L. (2021). Modification of starch composition, structure and properties through editing of TaSBEIIa in both winter and spring wheat varieties by CRISPR/Cas9. Plant Biotechnology Journal, 19(5), 937-951. https://doi.org/10.1111/pbi.13519
Liaqat, N., Liaqat, A., Ali, M., Qayyum, Z., Amir, R., Siddique, R., Gul, A., & Budak, H. (2020). Wheat genomics and genome editing. In Climate change and food security with emphasis on wheat (pp. 331-346). Academic Press.
Ling, H. Q., Qiu, J., & Sun, Z. (2003). Isolation of the wheat leaf rust resistance gene Lr1 by a combination of chromosome walking and candidate gene analysis. The Plant Journal, 36(4), 614-621. https://doi.org/10.1046/j.1365-313X.2003.01900.x
Liu, Q., Chen, B., Wang, Q., Shi, X., Xiao, Z., Lin, J., & Fang, X. (2009). Carbon nanotubes as molecular transporters for walled plant cells. Nano Letters, 9(3), 1007–1010. https://doi.org/10.1021/nl803370g
Liu, Y., Liu, D., & Zhang, Z. (2020). RNAi-mediated downregulation of wheat prolamin genes enhances lysine and tryptophan content. Plant Biotechnology Journal, 18(3), 798-808. https://doi.org/10.1111/pbi.13208
Lu, C., & Kang, J. (2008). Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation. Plant Cell Reports, 27(2), 273-278. https://doi.org/10.1007/s00299-007-0453-8
Lu, Y., & Zhu, J.-K. (2017). Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Molecular Plant, 10(3), 523-525. https://doi.org/10.1016/j.molp.2017.01.006
Lucca, P., Hurrell, R., & Potrykus, I. (2001). Genetic engineering approaches to improve the bioavailability and level of iron in rice grains. Theoretical and Applied Genetics, 102, 392-397. https://doi.org/10.1007/s001220051674
Lv, Z., Jiang, R., Chen, J., & Chen, W. (2020). Nanoparticle-mediated gene transformation strategies for plant genetic engineering. Plant Journal, 104(4), 880–891. https://doi.org/10.1111/tpj.15056
Mago, R., Zhang, P., Vautrin, S., Šimková, H., Bansal, U., Luo, M. C., ... & Doležel, J. (2015). The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nature Plants, 1(12), 15186. https://doi.org/10.1038/nplants.2015.186
Mandalà, G., Ceoloni, C., Busato, I., Favaron, F., & Tundo, S. (2021). Transgene pyramiding in wheat: Combination of deoxynivalenol detoxification with inhibition of cell wall degrading enzymes to contrast Fusarium Head Blight and Crown Rot. Plant Science, 313, 111059. https://doi.org/10.1016/j.plantsci.2021.111059
Martin, N., Forgeois, P., & Picard, E. (1992). Investigations on transforming Triticum aestivum via the pollen tube pathway. Agronomie, 12(5), 537–544. https://doi.org/10.1051/agro:19920505
McIntosh, R. A., Wellings, C. R., & Park, R. F. (1995). Wheat rusts: An atlas of resistance genes. CSIRO Publishing.
McIntosh, R. A., Yamazaki, Y., Devos, K. M., Dubcovsky, J., Rogers, J., & Appels, R. (2013). Catalogue of gene symbols for wheat. Annual Wheat Newsletter, 56, 1-238.
Meyers, B. C., Kaushik, S., & Nandety, R. S. (2003). Evolving disease resistance genes. Current Opinion in Plant Biology, 8(2), 129-134. https://doi.org/10.1016/j.pbi.2004.01.002
Miller, A. J., & Cramer, G. R. (2010). Root nitrogen acquisition and assimilation. Annual Review of Plant Biology, 61, 219-239. https://doi.org/10.1146/annurev-arplant-042809-112119
Mochida, K., & Shinozaki, K. (2011). Advances in omics and bioinformatics tools for systems analyses of plant functions. Plant and Cell Physiology, 52(12), 2017-2038. https://doi.org/10.1093/pcp/pcr106
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Nowara, D., Gay, A., Lacomme, C., Shaw, J., Ridout, C., Douchkov, D., ... & Schweizer, P. (2010). HIGS: Host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. The Plant Cell, 22(9), 3130-3141. https://doi.org/10.1105/tpc.110.077040
Okada, A., Arndell, T., Borisjuk, N., Sharma, N., Watson‐Haigh, N. S., Tucker, E. J., Baumann, U., Langridge, P., & Whitford, R. (2019). CRISPR/Cas9‐mediated knockout of Ms1 enables the rapid generation of male‐sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnology Journal, 17(10), 1905-1913. https://doi.org/10.1111/pbi.13123
Olsen, K. M., Szalma, S. J., & Sun, Q. (2016). Introduction of Ferritin gene from soybeans into wheat to enhance iron content. BMC Plant Biology, 16, 155. https://doi.org/10.1186/s12870-016-0800-3
Ouyang, X., Hong, X., Zhao, X., Zhang, W., He, X., Ma, W., Teng, W., & Tong, Y. (2016). Knockout of the PHOSPHATE 2 gene TaPHO2-A1 improves phosphorus uptake and grain yield under low phosphorus conditions in common wheat. Scientific Reports, 6(1), 29850. https://doi.org/10.1038/srep29850
Pang, Y., Wang, Y., & Sun, Y. (2022). Enhancing pro-vitamin, A content in wheat grains via maize psy and crtI gene expression. Journal of Experimental Botany, 73(10), 3225-3235. https://doi.org/10.1093/jxb/erac104
Periyannan, S., Moore, J., Ayliffe, M., Bansal, U., Wang, X., Huang, L., ... & Lagudah, E. (2013). The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science, 341(6147), 786-788. https://doi.org/10.1126/science.1239028
Petolino, J. F., Hopkins, N. L., Kosegi, B. D., & Skokut, M. (2000). Whisker-mediated transformation of embryogenic callus of maize. Plant Cell Reports, 19(8), 781-786. https://doi.org/10.1007/s002990000217
Picard, E., Jacquemin, J., Granier, F., Bobin, M., & Forgeois, P. (1988). Genetic transformation of wheat (Triticum aestivum) by plasmid DNA uptake during pollen tube germination. In Proceedings of the Seventh International Wheat Genetics Symposium (pp. 779–781). Cambridge University Press.
Poland, J. A., & Rife, T. W. (2012). Genotyping-by-sequencing for plant breeding and genetics. Plant Genome, 5(3), 92-102. https://doi.org/10.3835/plantgenome2012.05.0005
Poland, J. A., Brown, P. J., Sorrells, M. E., & Jannink, J. L. (2012). Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One, 7(2), e32253. https://doi.org/10.1371/journal.pone.0032253
Puchta, H., & Fauser, F. (2014). Synthetic nucleases for genome engineering in plants: Prospects for a bright future. The Plant Journal, 78(5), 727-741. https://doi.org/10.1111/tpj.12338
Ran, Y., Patron, N., Kay, P., Wong, D., Buchanan, M., Cao, Y. Y., Sawbridge, T., Davies, J. P., Mason, J., Webb, S. R., & Spangenberg, G. (2018). Zinc finger nuclease-mediated precision genome editing of an endogenous gene in hexaploid bread wheat (Triticum aestivum) using a DNA repair template. Plant Biotechnology Journal, 16(12), 2088-2101. https://doi.org/10.1111/pbi.12945
Rasheed, A., Hao, Y., Xia, X., Khan, A., Xu, Y., & He, Z. (2016). Crop breeding chips and genotyping platforms: Progress, challenges, and perspectives. Molecular Plant, 10(8), 1047-1064. https://doi.org/10.1016/j.molp.2016.06.009
Ravindran, V., & Dingle, J. (2023). Enhancing provitamin A levels in wheat through genetic modification. Trends in Food Science & Technology, 135, 180-189. https://doi.org/10.1016/j.tifs.2023.06.021
Rey, M. D., Martín, A. C., Smedley, M., Hayta, S., Harwood, W., Shaw, P., & Moore, G. (2018). Magnesium increases homoeologous crossover frequency during meiosis in ZIP4 (Ph1 gene) mutant wheat-wild relative hybrids. Frontiers in Plant Science, 9, 509. https://doi.org/10.3389/fpls.2018.00509
Ricroch, A., Eriksson, D., Miladinović, D., Sweet, J., Van Laere, K., & Woźniak-Gientka, E. (2024). A roadmap for plant genome editing. Springer Nature.
Risacher, T., Craze, M., Bowden, S., Paul, W., & Barsby, T. (2009). Highly efficient Agrobacterium-mediated transformation of wheat via in planta inoculation. In Transgenic wheat, barley and oats: Production and characterization protocols (pp. 115-124). Springer. [https://doi.org/10.1007/978-1-59745-460-8_12] (https://doi.org/10.1007/978-1-59745-460-8_12)
Roder, M. S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M. H., & Leroy, P. (1998). A microsatellite map of wheat. Theoretical and Applied Genetics, 97(1), 370-381. https://doi.org/10.1007/s001220051236
Roy, D., Karmakar, R., & Swain, D. (2022). Overexpression of the Aspergillus niger PhyA gene in wheat to reduce phytate content and enhance mineral bioavailability. Molecular Breeding, 42, 42. https://doi.org/10.1007/s11032-022-01393-6
Sánchez-León, S., Gil-Humanes, J., Ozuna, C. V., Giménez, M. J., Sousa, C., Voytas, D. F., & Barro, F. (2018). Low-gluten, non-transgenic wheat engineered with CRISPR/Cas9. Plant Biotechnology Journal, 16(3), 902-910. https://doi.org/10.1111/pbi.12816
Shan, Q., Wang, Y., Li, J., & Gao, C. (2014). Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocols, 9(10), 2395-2410. https://doi.org/10.1038/nprot.2014.162
Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., & Gao, C. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 31(8), 686-688. https://doi.org/10.1038/nbt.2650
Sharada, M. S., Kumari, A., Pandey, A. K., Sharma, S., Sharma, P., Sreelakshmi, Y., & Sharma, R. (2017). Generation of genetically stable transformants by Agrobacterium using tomato floral buds. Plant Cell, Tissue and Organ Culture (PCTOC), 129(2), 299-312. https://doi.org/10.1007/s11240-017-1226-2
Singh, R. P., Hodson, D. P., Huerta-Espino, J., Jin, Y., Njau, P., Wanyera, R., ... & Ward, R. W. (2016). Will stem rust destroy the world's wheat crop? Advances in Agronomy, 98, 271-309. https://doi.org/10.1016/S0065-2113(08)00205-8
Singh, R., Verma, P., & Yadav, S. (2024). Folate biofortification in wheat: Incorporating GTP cyclohydrolase I gene for enhanced folate levels. Plant Science, 334, 111872. https://doi.org/10.1016/j.plantsci.2024.111872
Steuernagel, B., Periyannan, S., & Hernandez-Pinzon, I. (2016). MutRenSeq: A rapid method for gene cloning using mutagenesis and exome capture. Nature Communications, 7, 12815. https://doi.org/10.1038/ncomms12815
Su, Z., Bernardo, A., Tian, B., Chen, H., Wang, S., Ma, H., Cai, S., Liu, D., Zhang, D., Li, T., & Trick, H. (2019). A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nature Genetics, 51(7), 1099-1105. https://doi.org/10.1038/s41588-019-0402-0
Tassy, C., Partier, A., Beckert, M., Feuillet, C., & Barret, P. (2014). Biolistic transformation of wheat: Increased production of plants with simple insertions and heritable transgene expression. Plant Cell, Tissue and Organ Culture (PCTOC), 119(1), 171–181. https://doi.org/10.1007/s11240-014-0530-2
Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327(5967), 818-822. https://doi.org/10.1126/science.1183700
Thind, A. K., Singh, R., & Rahman, M. (2017). TACCA: Chromosome flow sorting and next-generation sequencing for gene cloning. Molecular Plant, 10(5), 677-690. https://doi.org/10.1016/j.molp.2017.01.002
Trijatmiko, K. R., & Singh, S. (2016). CRISPR/Cas9 knockout of TaVIT2 gene increases iron content in wheat endosperm. BMC Plant Biology, 16, 190. https://doi.org/10.1186/s12870-016-0830-9
Triticarte. (2020). DArTSeq for wheat. Retrieved from https://www.triticarte.com.au/content/dartseq.html
Trono, D., & Pecchioni, N. (2022). Candidate genes associated with abiotic stress response in plants as tools to engineer tolerance to drought, salinity, and extreme temperatures in wheat: An overview. Plants, 11(23), 3358. https://doi.org/10.3390/plants11233358
Varshney, R. K., Graner, A., & Sorrells, M. E. (2006). Genomics-assisted breeding for crop improvement. Trends in Plant Science, 10(12), 621-630. https://doi.org/10.1016/j.tplants.2005.10.004
Varshney, R. K., Sehgal, S., & Kumar, A. (2014). Advances in genomics and breeding for drought resistance in wheat. International Journal of Plant Genomics, 2014, 1-12. https://doi.org/10.1155/2014/548526
Vasil, V., Castillo, A. M., Fromm, M. E., & Vasil, I. K. (1992). Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Nature Biotechnology, 10(6), 667–674. https://doi.org/10.1038/nbt0692-667
Wang, J., Zhang, L., & Liu, X. (2017). MutMap: A method for high-resolution gene mapping in bread wheat. Theoretical and Applied Genetics, 130(4), 779-791. https://doi.org/10.1007/s00122-016-2810-7
Wang, M., Zhang, B., & Wang, Q. (2013). Cotton transformation via pollen tube pathway. In Transgenic cotton: Methods and protocols (pp. 71-77). Humana Press. [https://doi.org/10.1007/978-1-61779-9710_6] (https://doi.org/10.1007/978-1-61779-971-0_6)
Wang, S., Wong, D., Forrest, K., Allen, A., Chao, S., Huang, B. E., ... & Maccaferri, M. (2014a). Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnology Journal, 12(6), 787-796. https://doi.org/10.1111/pbi.12183
Wang, W., Simmonds, J., Pan, Q., Davidson, D., He, F., Battal, A., Akhunova, A., Trick, H. N., Uauy, C., & Akhunov, E. (2018). Gene editing and mutagenesis reveal inter-cultivar differences and additivity in the contribution of TaGW2 homoeologues to grain size and weight in wheat. Theoretical and Applied Genetics, 131, 2463-2475. https://doi.org/10.1007/s00122-018-3113-0
Wang, X., Zhao, T., & Zhang, Q. (2015). Advances in understanding abiotic stress responses in plants. Frontiers in Plant Science, 6, 905. https://doi.org/10.3389/fpls.2015.00905
Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., & Qiu, J. L. (2014b). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32(9), 947-951. https://doi.org/10.1038/nbt.2979
Xu, Y., & Crouch, J. H. (2008). Marker-assisted selection in plant breeding: From publications to practice. Crop Science, 48(2), 391-407. https://doi.org/10.2135/cropsci2007.04.0191
Yan, Y., Zhu, X., Yu, Y., Li, C., Zhang, Z., & Wang, F. (2022). Nanotechnology strategies for plant genetic engineering. Advanced Materials, 34(21), 1 2106945. https://doi.org/10.1002/adma.202106945
Yang, A., Su, Q., An, L., Liu, J., Wu, W., & Qiu, Z. (2009). Detection of vector-and selectable marker-free transgenic maize with a linear GFP cassette transformation via the pollen-tube pathway. Journal of Biotechnology, 139(1), 1-5. https://doi.org/10.1016/j.jbiotec.2008.09.002
Yang, J., Hu, C., Hu, H., Yu, R., Xia, Z., Ye, X., & Zhu, J. (2010). QTLNetwork: Mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics, 24(5), 721-723. https://doi.org/10.1093/bioinformatics/btp693
Yang, S., Li, G., Li, M., & Wang, J. (2011). Transgenic soybean with low phytate content constructed by Agrobacterium transformation and pollen-tube pathway. Euphytica, 177(3), 375-382. https://doi.org/10.1007/s10681-010-0344-7
Yao, Q., Cong, L., He, G., et al. (2007). Optimization of wheat cotransformation procedure with gene cassettes resulted in an improvement in transformation frequency. Molecular Biology Reports, 34(1), 61–67. https://doi.org/10.1007/s11033-006-9017-2
Ye, X., Williams, E. J., Shen, J., Johnson, S., Lowe, B., Radke, S., ... & Gilbertson, L. A. (2011). Enhanced production of single copy backbone-free transgenic plants in multiple crop species using binary vectors with a pRi replication origin in Agrobacterium tumefaciens. Transgenic Research, 20(4), 773-786. https://doi.org/10.1007/s11248-010-9466-8
Yu, J., Liu, D., Wang, C., & Li, H. (2011). Identification of novel rust resistance genes in wheat using a combined approach of bi-parental and genome-wide association mapping. Theoretical and Applied Genetics, 123(2), 405-416. https://doi.org/10.1007/s00122-011-1604-4
Yuan, S., Li, S., & Zhou, X. (2017). Enhancing wheat protein content and nitrogen use efficiency through RNAi-mediated suppression of GS gene. Frontiers in Plant Science, 8, 1517. https://doi.org/10.3389/fpls.2017.01517
Zale, J. M., Agarwal, S., Loar, S., & Steber, C. M. (2009). Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens. Plant Cell Reports, 28(6), 903-913. https://doi.org/10.1007/s00299-008-0701-4
Zhang, H., Irving, L. J., McGill, C., Matthew, C., Zhou, D., & Kemp, P. (2010). The effects of salinity and osmotic stress on barley germination rate: Sodium as an osmotic regulator. Annals of Botany, 106(6), 1027-1035. https://doi.org/10.1093/aob/mcq232
Zhang, J., Li, W., & Sanchez-Martin, J. (2020). Advances in MutChromSeq and its applications for gene cloning in wheat and barley. Journal of Experimental Botany, 71(8), 2541-2555. https://doi.org/10.1093/jxb/eraa027
Zhang, P., Burbank, L., Hu, Y., & McManus, M. T. (2013). Gene expression analysis of wheat (Triticum aestivum L.) during responses to doubled haploid production procedures. BMC Plant Biology, 13, 106. https://doi.org/10.1186/1471-2229-13-106
Zhang, Q., & Huang, W. (2021). Iron biofortification of transgenic wheat through overexpression of ferritin gene. Journal of Plant Nutrition and Soil Science, 184(5), 643-652. https://doi.org/10.1002/jpln.202000326
Zhang, R., Yang, Z., Wang, Z., Zhang, Y., Li, Y., Zhao, S., ... & Liu, J. (2019a). Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nature Plants, 5(5), 480–485. https://doi.org/10.1038/s41477-019-0414-4
Zhang, X., & Yang, Z. (2022). Enhancing vitamin, A content in wheat through genetic modification: Prospects and challenges. Plant Biotechnology Reports, 16, 437-447. https://doi.org/10.1007/s11816-022-00714-3
Zhang, Y., Liang, Z., Zong, Y., Wang, Y., Liu, J., Chen, K., Qiu, J. L., & Gao, C. (2016). Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications, 7, 12617. https://doi.org/10.1038/ncomms12617
Zhang, Y., Zhang, H., & Wang, Q. (2019b). QTL mapping for pre-harvest sprouting tolerance in wheat. Theoretical and Applied Genetics, 132(5), 1395-1408. https://doi.org/10.1007/s00122-019-03319-6
Zhang, Y., Zhang, H., Wang, Q., Liu, Y., Zhang, Y., & Chen, M. (2017). Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant Journal, 91(4), 714–724. https://doi.org/10.1111/tpj.13586
Zhang, Z., Song, H., & Li, X. (2018). Overexpression of rice nicotianamine synthase gene (OsNAS2) increases iron and zinc content in wheat grains. Plant Science, 275, 234-241. https://doi.org/10.1016/j.plantsci.2018.04.017
Zhao, F. J., Ma, J. F., & Meharg, A. A. (2017a). Arsenic uptake and metabolism in plants. New Phytologist, 217(3), 983-998. https://doi.org/10.1111/nph.14943
Zhao, X., Meng, Z., Wang, Y., Chen, W., Sun, C., Cui, B., ... & Guo, S. (2017b). Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nature Plants, 3(12), 956–964. https://doi.org/10.1038/s41477-017-0075-1
Zhao, Y., Li, X., & Wang, Z. (2023). Biofortification of wheat with lysine: Overexpression of barley DHDPS gene. Journal of Agricultural and Food Chemistry, 71(7), 2876-2885. https://doi.org/10.1021/acs.jafc.2c06462
Zhao, Z., Liang, Z., & Wang, X. (2015). Enhancing lysine content in wheat through overexpression of aspartate kinase gene. Journal of Cereal Science, 66, 27-34. https://doi.org/10.1016/j.jcs.2015.07.005
Zhu, X., Wang, B., Guo, W., & Shi, Y. (2016). Overexpression of wheat TaAOC1 gene enhances salt tolerance in transgenic wheat. Plant Molecular Biology Reporter, 34(4), 930-938. https://doi.org/10.1007/s11105-016-0997-0
Zong, Y., Song, Q., Li, J., Zhang, H., Wang, Y., Qian, K., ... & Zhang, H. (2022). An engineered prime editor with enhanced editing efficiency in plants. Nature Biotechnology, 40(9), 1394–1402. https://doi.org/10.1038/s41587-022-01396-5
Zong, Y., Wang, Y., Li, J., Zhang, H., Song, Q., Zhang, Y., ... & Zhang, H. (2017). Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nature Biotechnology, 35(5), 438–440. https://doi.org/10.1038/nbt.3835