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Chapter 2 Insect Pest Challenges in Cereal Crops - Current Scenario and
Sustainable Management Strategies

Ecological Role of Entomopathogenic
Nematodes in Suppressing Insect Pests Iin
Maize (Zea mays L.)

Gitanjali Devi

Maize (Zea mays L.) is an annual crop mainly grown for food in tropical and subtropical regions
of the world. Among various abiotic and biotic factors, infestation of pest is one of the factors
in low production of maize. Although chemical insecticides are the main means of pest
suppression, various agro-ecological approaches have been suggested for pest management
through the actions of natural enemies. Among the natural enemies of insect pests of maize,
entomopathogenic nematodes (EPNSs) are one of the important natural enemies that have several
positive attributes as biocontrol agent. EPNs, Steinernema spp. and Heterorhabditis spp. are
obligate parasites of insect pests attacking agricultural crops including maize. They carry
pathogenic bacterial symbionts which are responsible for killing the insect host within 24 - 48
hrs. However, the efficacy of EPNs to control insect pests is adversely affected by various
ecological factors. Differences in virulence, application techniques, resource competitors as
well as environmental conditions have been cited as possible reasons for variable field
performance. Technological advances in EPN mass production and application methods with
changing agricultural practices will provide further opportunities to include the use of EPNs in
pest management programs in maize crop. Therefore, knowledge about the EPN population
dynamics and their behavioral ecology is essential for optimizing their use as sustainable pest
management approaches. By combining traditional insights with new innovative methods, with
better formulation and application practices we can expand EPN applications in
agroecosystems, fostering eco-friendly maize cultivation.
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Introduction

Maize or corn (Zea mays L.), the ‘queen of cereals’ is cultivated in wide range of climatic conditions
throughout the world. It is used as food, poultry feed and fodder crops. Moreover, there is an increasing
importance of grain for ethanol production (Baker & Zahniser, 2006). In India, maize is cultivated
predominantly as a Kharif crop on 108.87 lakh hectares with productivity of 3 metric ton per hectare and has
a modest share of 2.7 percent in global maize production during 2023-24 (Reddy, 2024). Heavy lodging,
competition with weed, infestation of disease and pests etc. are some of the obstructions in production of
maize. Among all, incidence of diseases and insect pests are main problem. As many as 141 insect pests
cause a varying degree of damage right from sowing to harvest or storage (Singh & Jaglan, 2018). The total
economic loss of in India due to insect pest attack in maize has been estimated to be 5-15% (Patel & Rajput,
2024). Though chemical insecticides are recommended practices against these insect pests, indiscriminate
use of chemical insecticides leads to pesticide resistance, health and environmental concerns. Moreover,
chemical insecticides destroy beneficial natural enemies in the agro-ecosystem. Therefore, biological
management is the effective and sustainable alternative management method where natural enemies are
manipulated for a long-term sustainability of the ecosystem (Zhou et al.,2024). Natural enemies would
include insect parasitoids, predaceous arthropods, nematodes, and microbial pathogen such as bacteria, fungi
and virus (Babendreier et al., 2020). Among the natural enemies of insect pests, Entomopathogenic
nematodes (EPNSs) have been recognized as a major natural enemy in agricultural, horticultural, and forestry
ecosystem (Koppenhofer et al., 2020). EPNs, Steinernema spp. from the Steinernematidae and
Heterorhabditis spp. from the Heterorhabditidae families under the order Rhabditida are obligate parasites
of insects in agricultural crops including maize.

Mode of action of EPNs

The free-living third stage juvenile is a non-feeding stage present in the soil. The infective juvenile (1J) carry
symbiotic bacteria and search for insect host and penetrate into the hemocoel by invading through the natural
openings and become parasitic by releasing their symbiont bacteria, Xenorhabdus spp. in Steinernematids
and Photorhabdus spp. in heterorhabditids, respectively (Tarasco et al., 2023). The bacterial symbionts, are
responsible for killing the host usually within 24 to 48 h, defending against secondary invaders, and providing
the nematodes with nutrition

Ecological role of EPNs

Environment, host and innate characteristics of the nematodes, all influence the potentials of EPNs. For
biocontrol efficacy, ecology of the target pest should match with the behavior and action of EPNSs. In the
agro-ecosystem there should be manipulation of agricultural habitats to optimize environmental conditions
to be less favorable for insect pest and more favorable to beneficial organisms and facilitate their persistence.
Soil is the natural habitat of EPNs and 90% of insect pest species spend at least part of their life cycle in soil.
Therefore, greater understanding of the fundamental ecology of these organisms in the natural environment
and post-application would be of immense value in the development of more ecologically sound management
approaches (Barbercheck, 2024). EPNs have a broad host range with diverse species. The prevalence of
infective juveniles (1Js) of EPNs in different habitats is affected by both intrinsic and extrinsic factors (Stuart
et al., 2015). Knowledge about these factors in determining their distribution in agro-ecosystems is essential
to enhance the ecosystem service that EPN provide.
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In a survey for natural control agents of the fall armyworm (FAW) in corn fields of southern Mexico,
demonstrated larval mortality due to entomopathogens was 12.99%, which were prevalent as natural control
agents and affected later stages of the larvae (Ruiz-N4jera et al.,2013). Raulston et al., (1992) showed that
natural infection of FAW by EPNs with 4% of infection of FAW pupae in maize fields. Plant roots often
attract root herbivores that serve as hosts for EPNs, while root architecture can impact EPN movement and
host searching ability, thus plants indirectly affect EPN activity and natural occurrence in soil ecosystems
(Hazir et al., 2016). Rasmann et al., (2005) and Robert et al., (2017) demonstrated that EPNs were found to
orient towards (strongly attracts H. megidis and less attracts H. bacteriophora) the western corn rootworm
(WCR) (Diabrotica virgifera virgifera) - damaged maize roots using the root-emitted organic volatile
compound sesquiterpene, (E)-p-caryophyllene. WCR larvae are able to sequester benzoxazinoids. This
sequestration provides them with resistance against certain strains of H. bacteriophora and their symbiotic
bacteria (Bruno et al., 2020).

Beneficial behavior of EPNs

EPNSs appear to be opportunists rather than biocides (Kaya and Gaugler, 1993). The behavior may be different
for different species and even strains or known to change over time under laboratory culture (Ishibashi &
Kondo, 1990). The beneficial behavior can be checked in the laboratory before field application (Blanco-
P erez et al., 2024). The ability of 1Js to persist and disperse until host location, and infection is a good
behavioral mechanism of EPNs. The principle biotic components like soil microorganisms, plants, and
invertebrates have a major role on nematode persistence. Persistence in soil in the absence of a host depends
upon temperature, humidity, natural enemies, and soil type. Most experiments proved that applied nematodes
can persist in field soils long enough to control D. v. virgifera larvae (Pilz et al., 2012). Similarly, the EPNs
dispersal depends on numerous inherent and extrinsic factors. Active movement increases chances in finding
a host and survival. Soil porosity also affects nematode dispersal.

Nematodes disperse passively by rain, wind, soil, insects and human activity. Once the habitat has been
selected, some species appear to prefer to search for hosts at or near the soil surface (ambusher) like S.
carpocapsae, S. scapterisci, and S. fabii whereas others are adapted to search deeper in the soil profile
(cruiser) like H. indica, H.bacteriophora, S. feltiae, S. glaseri, H. noenieputensis, H. safricana, S. jeffreyense,
and S. yirgalemense (Campbell & Lewis, 2002; Rakubu et al., 2024). Lewis et al., (2015) have demonstrated
that cruiser nematodes may shift from ranging to localized search, by decreasing their search area and rate of
locomotion. After selection of host, attachment to the host is a requirement to infection. Nictation is a
behavior related to nematode orientation to host insects and attachment (Campbell & Gaugler, 1993). When
unable to nictate, EPN activity to find host or mobile insects decreases. Penetration or invasion into the host
is an important behavior in the infection process. EPNs penetrate through spiracles, oral, anal region or
sometimes smooth cuticle. Penetration rates may be species-specific or may vary within populations of the
same species, e.g. S. carpocapsae and S. feltiae (Alonso et al.,2018).

Infective juvenile (1Js) age has a significant effect on host-seeking behavior, penetration and activation.
Infection by EPNs is the result of a complex process through releasing the symbiotic bacteria they carry along
with excreted / secreted nematode proteins (Alonso et al., 2018). EPN 1J infection is a species-specific and
host-specific process and that nematode host preferences coincide. Certain EPN symbionts have shown
strong virulence with number of bacterial cells carried by each individual 1J. The virulence of EPNs depends
on the host species as well as their developmental stage (Fuxa et al., 1988; Glazer et al., 2025).
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When the nematodes become established and reproduce, their progeny continue to infect the target insect
(Griffin, 2012). EPN densities are another factor, as lower numbers of 1Js needed more time to infect and
reproduced inside the insect’s body. EPNs are usually applied in high numbers; up to billions of 1Js (25
1Js/cm2) is required to increase the chances of finding host insects. EPNs applied with sowing of maize at
relatively low rates in the soil persist long enough to potentially control all three larval instars of D. v.
virgifera (Pilz et al.,2012). Spraying of H. bacteriophora HbSD suspension on maize leaves exhibited high
lethal effects on FAW larvae at concentrations of 2000 1Js per 3rd stage larva (Chen et al., 2023). Scavenging
is another alternative pathway for EPNs. Blanco-Perez et al., (2019) observed that H.bacteriophora did not
reproduce as a scavenger. Studies have revealed that EPN-infected rootworms release specific volatiles, such
as butylated hydroxytoluene, that attracted new rootworms and increased nematode reproductive success
(Zhang et al., 2019).

Performance or efficacy of EPNs is the ability to infect host insect, and multiply inside them or to persist in
the pest's environment (Shapiro-llan et al., 2012). As EPNs are generally isolated from soil habitats, they
have been extensively exploited to suppress soil-dwelling insect pests in agricultural fields (Table.1). Better
environmental tolerance in EPN strains can be related to geographic origin because EPNs are expected to
adapt to native conditions (Glazer, 2002). The effectiveness of EPNs for aboveground applications has been
limited due to desiccation and ultraviolet radiation.

Successful parasitism of corn earworm by S. riobravis under field conditions may be attributed to its
subtropical origin and adaptation to high temperatures (>38°C) (Raulston et al.,1992). Three Turkish strains
viz., S. carpocapsae, S. feltiae and H. bacteriophora, at 30°C on the last instar larvae of the corn stalk borer,
Sesamia cretica cause mortality of 82, 92 and 94%, respectively (Gozel & Gunes,2013). The osmotic pressure
of the spray solution also influences as it increases during evaporative loss of water from the leaf (Glazer &
Salame 2000). As D. v. virgifera larvae are usually most damaging in clay soils, control efficacies of
nematodes are higher in clay soils than in sandy soils. However, the impact of temperature or moisture on
EPN efficacy can be nullified by choosing the right EPN strain and application at the right time, with proper
application technology (Shapiro-llan et al., 2006).

Wright et al., (1993) observed effectiveness of S. riobravis when applied to moist soils after irrigation or via
in-furrow irrigation against soil-inhabiting stages of corn earworm. After being sprayed by using adjuvants
or anti-desiccants on maize leaves against FAW, I1Js of H.bacteriophora HbSD reduced the risk of desiccation
(Chen et al., 2023). The direct application of S.carpocapsae and H. indica, to the whorl with sand as carrier
material may provide better results against FAW.

Conclusion and future perspectives

EPNs are potential natural enemies of insect pests which can reduce pest populations of maize plantation in
an ecofriendly way. More works are needed in the interactions of EPNs with other biotic agents or antagonists
or the impact of soil habitat complexity. To widen the utilization of EPN, isolation and screening of EPN
species/strains that meet the efficacy requirements is also important.

Therefore, there is a need to implement more powerful molecular tools with a finer taxonomic resolution,
such as high-throughput sequencing (Depuydt et al., 2024). EPN adaptations and parasitism strategies have
widespread ecological implications, from influencing insect populations in natural ecosystems to providing
sustainable solutions for pest management in agriculture.
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Table 1. Entomopathogenic Nematodes against Insect-Pests of Maize

Pests Entomopathogenic Experimen Mortality (%0) References
nematodes tal
condition
Corn borer Steinernema innovationi | Lab 60% @ 500 1J/Pupa Ramakuwela
(Chilo partellus) etal., (2018)
Corn borer Heterorhabditis Field Significant reduction of | EI-Wakeil &
(Chilo bacteriophora (BA1) larvae Hussein
agamemnon) S. carpocapsae (BA2) (2009)
Cutworm H.indica+ Metarhizium | Field 22.18 % decrease in Bhagat et al.,
(Agrotis ipsilon) | anisopliae plant mortality (2008)
@ 0.5b s /ha +
5 X 10! spores/ ha.
S.feltiae, Mexican and Field 50% reduction in plant Capinera et
Kapow damage by S. feltiae@ 5 | al., (1988)
S. bibionis x 105/ m?
H.heliothidis
H. megidis Lab, Fourth and/or fifth Ebssa &
H. bacteriophora Pot instars were the most Koppenhofer
S. carpocapsae susceptible stages to (2012)
S. riobrave most EPN species, and
pupae were
the least susceptible
European corn S. carpocapsae All and Field Reduced the rate of ear Ben-Yakir et
borer ‘Mexican’ strains damage from 20% - 5% | al., (1998)
(Ostrinia H. bacteriophora HP88 by S.carpocapsae
nubilalis) @50,000 1J / plant
H. bacteriophora (BA1) | Field Significant reduction of | EI-Wakeil &
S. carpocapsae (BA2) larvae Hussein
(2009)
S. feltiae Lab, Effectively controlled Rigaetal.,
S. glaseri Greenhouse | damage (2001)
Microplot
Asian corn borer | S. carpocapsae Lab 100% pupae mortality Cheng et al.,
(Ostrinia (1999);
furnacalis) Chao etal.,
(2025)
S. feltiae Field 90.5% larval mortality Heetal,
@200 1Js/plant (1991)
Fall armyworm H. indica Semi-field | 86.67% by H.indica, Ratnakala et
(FAW) S. carpocapsae conditions. | 83.33% by al., (2023)
(Spodoptera @ 500 lJs S.carcocapsea
frugiperda)
H. bacteriophora HbSD | Lab 3 1Js/ 3rd stage larvae Chenetal.,
cause 54.39% mortality | (2023)
78.33% -100% of 5th
instar larvae
2000:1 per larva, with a
Pot mortality of 51.56% -

68.72%
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@10,0001Js/plant,

Field 51.20% @25,000
1Js/plant

H. indica Lab 100% third-instar larvae | Garcia etal.,

Steinernema sp. (IBCB- @ 280 1Js (2008)

n6)

S.carpocapsae Lab S. carpocapsae + Viteri et al.,
chlorantraniliprole or (2018)
spinetoram caused larvae
mortality of over 90%

S. feltiae Field 71% infection, Richter &

up to 53% reduction of | Fuxa (1990)
a mixed population of H.

zea and

S. frugiperda

H. indica CICR-HI-MN | Lab High mortality of 3rd, Shinde et al.,

CICR-HI-CL 4th, 5th instar larvae (2022)

S. feltiae Lab, Effectively controlled Rigaetal.,

S. glaseri Greenhouse (2001)

, Microplot
S. carpocapsae (All) 100% for the 3rd and 5th | Sayed et al.,
H.bacteriophora (HP88) larval instars by (2022)
S. carpocapsae @80
1Js/ml
88.9% mortality by H.
bacteriophora

H. indica 1 NBAIIH38 Lab 100% in third- and Patil et al.,

S. carpocapsae fourth-instar larvae. (2022)

NBAIRS59 Field H. indica reduced
number of larvae and
leaf damage scores.

H. indica Lab H. indica, Acharya et

H. bacteriophora, S. carpocapsae, al., (2020)

Heterorhabditis sp. S. longicaudum

S.carpocapsae highly virulent against

S. arenarium late larval and pupal

S. longicaudum stages

S. kushidai

S.carpocapsae Field Decrease of larvae by Azazy et al.,

(EGAZ10) 93.3+2.7% by (2025)

H. indica (EGAZ5) S.carpocapsae

S. arenarium Lab At 200 1J/, Andalé et al.,

Heterorhabditis sp. S. arenarium, (2010)

RSC02 Heterorhabditis sp.
caused 100 and 97.6%
mortality respectively,

77.5 and 87.5%
Greenhouse | mortality
Fall armyworm S.carpocapsae Lab, 100% of second- and Fallet et al.,
(FAW) Field third-instar larvae (2022;2024)
(Spodoptera S. feltiae, Lab S. feltiae cause 100% Fuxaetal.,
frugiperda) S.feltiae hybrid mortality of first-instar (1988)
S. bibionis @ 30 to 60 1Js /0.7 ml
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Pupae mortality 7-20%

S.carpocapsae Lab 100% Rashed et al.,
H. bacteriophora (2024)
S. carpocapsae Lab 2nd to 6th instars Mohamed &
H. indica (EGAZ2) S. carpocapsae 100% Shairra
150-2400 1Js (2023)
H. indica caused 100%
mortality in early instars
S. diaprepesi Lab 100% @ 100 1Js Cacciaetal.,
(2014)
H. indica Lab 83% of 2nd instar larvae | Wattanachaiy
S. siamkayai with H. indica at 250 1Js/ | ingcharoen et
ml al., (2021)
68% mortality with
S. siamkayai at 300 1Js
/ml.
Greenhouse | 58% by H. indica
conditions | 45% by S.siamkayai at
(pot) 50,000 1Js/ ml
Western corn H. bacteriophora Field At 2 billion nematodes / | Toepfer &
rootworm, ha reduced Zellner
Diabrotica D. v. virgifera. (2017);
virgifera Reduced Pilzetal.,
virgifera Field D. v. virgifera by (2009)
65 + 34%
H. bacteriophora, Lab All larval instars and Jackson,
H. megidis, even pupae are (1996);
S. feltiae, effectively killed; Adults | Jackson &
S. arenarium, appeared less Brooks,
S. kraussei susceptible; (1989;1995);
S. carpocapsae Field S abassi was found Jackson &
S.glaseri intermediate; Hesler
S carpocapsae and (1995);
S glaseri less virulent; Journey&

H. bacteriophora,
H. megidis are highly
effective

Ostlie (2000);
Toepferetal.,
(2005,2008);
Kurtz et al.,
(2009);
Hiltpold et
al.,
(2009,2012);
Pilz etal.,
(2011);
Modic et al.,
(2020);
Jaffuel et al.,
(2019;2020);
Toth et al.,
(2022)

Www.cornousbooks.com

18



Insect Pest Challenges in Cereal Crops - Current Scenario and Sustainable Management Strategies

H. bacteriophora Field Root damage was less Kimetal.,
(2021)
S. carpocapsae Field Significantly lower root | Ellsbury et
‘Mexican’ and ‘All’ injury al.,
strains (1996)
H. bacteriophora, Lab Third-instar larva @60- | Geisert et al.,
H. megidis 120 1Js/larva (2018)
S.feltiae Except S. rarum
S. carpocapsae All were highly effective
S. diaprepesi in mortality
S.riobrave
H. bacteriophora
(Missouri wild-type)
S. rarum
S. feltiae Lab, Effectively controlled Rigaetal.,
S. glaseri Greenhouse (2001)
, Microplot
Northern corn S. feltiae Mexican Lab First instar NCR Thurston &
rootworm S. bibionis @10,000 1Js/ linear Yule (1990)
(NCR), meter of corn row.
(Diabrotica Reduction of larvae
barberi)
Stem borer Heterorhabdidtis sp. Field Laval mortalities Claudius-
(Sesamia 4-57% Cole (2018)
calamistis) S. innovationi Lab 100% larval mortality Ramakuwela
etal., (2018)
Corn borers H. bacteriophora (BA1) | Lab 97% and 100% mortality | EI-Wakeil &
(Sesamia cretica) | S. carpocapsae (BA2) of larvae Hussein
(2009)
H. bacteriophora Lab, Field 1000 s/ mi Saleh et al.,
H.taysearae 40.62% - 67.86% (2000)
mortality
S.carpocapsae, Lab 82, 92 and 94% Gozel &
S.feltiae , mortality of last instar Glines
H. bacteriophora larva (2013)
S. carpocapsae All, H. Lab, 100,200 and 400 1Js of Halawa et al.,
bacterionphora HP88 Field S.carpocapsae /ml) (2007)
cause 20.0 - 33.3%
mortality ;
28 % reduction of dead
heart plants.
Corn earworm, H.bacteriophora (HP88 | Lab 98.3% - 100.0% on first | Zhang et al.,
(Helicoverpa and VS strains), to fourth instars, fifth (2024)
zea) H.floridensis (K22 instars, and pupae
strain), Hgkesha (Kesha
strain), S. riobrave 355
S. carpocapsae Field cause larval mortality
(All and Cxrd strains), at 20 78.2%
S. feltiae (SN strain), IJs/cm2 and
S. rarum (17c+e strain), | 2 ml/plant

S. riobrave (355 and 7—
12 strains
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S. riobravis Field 200,000 1Js/m? Cabanillas &
S. carpocapsae S. riobrave cause 95% Raulston
parasitism (1995;1996)
Neoaplectana Field 4x10%* 1Js / ml sprayed Bong &
carpocapsae DD136 twice at 3 days interval Sikorowski
showed 55% control (1983);
Bong (1986)
S. carpocapsae Field 40,000 1Js /ml 74.5 % Purcell et al.,
mortality (1992)
S. riobravis Field 1.2x107 1Js/m? of soil Feaster &
cause 91.3% mortality Steinkraus
(1996)
S. riobravis Field S. riobravis @ 200,000 | Cabanillas &
S. carpocapsae 1J/m2 cause 97% Raulston
parasitism (1996)
Steinernema sp. Field Prepupae and pupae Raulston et
11.6% were parasitized | al., (1992)
S.adamsi Lab 74.2% - 100% 1st to Glover et al.,
4th instars mortality, (2025)
Pupae were not killed;
S. adamsi with 0.05%
sodium alginate and
0.02% Congo red 98%
larval mortality
Corn earworm, H. amazonensis MCO01 Lab, 80% mortality @400 1Js/ | Andalo et al.,
(Helicoverpa H. amazonensis JPM4 greenhouse | pupa (2021)
armigera) S. carpocapsae
Grey maize S.carpocapsae Lab S.carpocapsae @ Toshova et
weevil H.bacteriophora 83-333 1Js /adult al., (2024)
(Tanymecus caused > 94% mortality;
dilaticollis) H. bacteriophora
caused 27-61% mortality
Seedcorn maggot | S. feltiae Lab, Significant larval Rigaetal.,
(Delia platura) S. glaseri Greenhouse | mortality (2001)
, Microplot
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